Do you want to publish a course? Click here

Anisotropic Thermoreflectance Thermometry: A contactless frequency-domain approach to study anisotropic thermal transport

109   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We developed a novel contactless frequency-domain approach to study thermal transport, which is particularly convenient when thermally anisotropic materials are considered. The method is based on a similar line-shaped heater geometry as used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies. The present method is especially suitable to determine all the elements of the thermal conductivity tensor, which is experimentally achieved by simply rotating the sample with respect to the line-shaped optical heater. We provide the mathematical solution of the heat equation for the cases of anisotropic substrates, multilayers, as well as thin films. This methodology allows an accurate determination of the thermal conductivity, and does not require complex modeling or intensive computational efforts to process the experimental data, i.e., the thermal conductivity is obtained through a simple linear fit (slope method), in a similar fashion as in the 3-omega method. We demonstrate the potential of this approach by studying isotropic and anisotropic materials in a wide range of thermal conductivities. In particular, we have studied the following inorganic and organic systems: (i) glass, Si, and Ge substrates (isotropic), (ii) $beta$-Ga$_2$O$_3$, and a Kapton substrate (anisotropic) and , (iii) a 285 nm SiO$_2$/Si thin film. The accuracy in the determination of the thermal conductivity is estimated at $approx$ 5%, whereas the best temperature resolution is $Delta$T $approx$ 3 mK.



rate research

Read More

Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena such as insulator-metal transitions, magnetism, magnetoresistance, and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites. Since the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.
Layered materials have uncommonly anisotropic thermal properties due to their strong in-plane covalent bonds and weak out-of-plane van der Waals interactions. Here we examine heat flow in graphene (graphite), h-BN, MoS2, and WS2 monolayers and bulk films, from diffusive to ballistic limits. We determine the ballistic thermal conductance limit (Gball) both in-plane and out-of-plane, based on full phonon dispersions from first-principles calculations. An overall phonon mean free path ({lambda}) is expressed in terms of Gball and the diffusive thermal conductivity, consistent with kinetic theory if proper averaging of phonon group velocity is used. We obtain a size-dependent thermal conductivity k(L) in agreement with available experiments, and find that k(L) only converges to >90% of the diffusive thermal conductivity for sample sizes L > 16{lambda}, which ranges from ~140 nm for MoS2 cross-plane to ~10 um for suspended graphene in-plane. These results provide a deeper understanding of microscopic thermal transport, revealing that device scales below which thermal size effects should be taken into account are generally larger than previously thought.
The angular dependence of the thermal transport in insulating or conducting ferromagnets is derived on the basis of the Onsager reciprocity relations applied to a magnetic system. It is shown that the angular dependence of the temperature gradient takes the same form as that of the anisotropic magnetoresistance, including anomalous and planar Hall contributions. The measured thermocouple generated between the extremities of the non-magnetic electrode in thermal contact to the ferromagnet follows this same angular dependence. The sign and amplitude of the magneto-voltaic signal is controlled by the difference of the Seebeck coefficients of the thermocouple.
102 - H. P. Wang , D. S. Wu , Y. G. Shi 2016
We present anisotropic transport and optical spectroscopy studies on EuCd_2As_2. The measurements reveal that EuCd_2As_2 is a low carrier density semimetal with moderate anisotropic resistivity ratio. The charge carriers experience very strong scattering from Eu magnetic moments, resulting in a Kondo-like increase of resistivity at low temperature. Below the antiferromagnetic transition temperature at $T_N$= 9.5 K, the resistivity drops sharply due to the reduced scattering from the ordered Eu moments. Nevertheless, the anisotropic ratio of $rho_c/rho_{ab}$ keeps increasing, suggesting that the antiferromagnetic coupling is along the c-axis. The optical spectroscopy measurement further reveals, besides an overdamped reflectance plasma edge at low energy, a strong coupling between phonon and electronic continuum. Our study suggests that EuCd_2As_2 is a promising candidate displaying intriguing interplay among charge, magnetism and the underlying crystal lattice.
127 - Meng Yang , Weizhi Zou , Jing Guo 2020
Energy-saving cooling materials with strong operability are desirable towards sustainable thermal management. Inspired by the cooperative thermo-optical effect in fur of polar bear, we develop a flexible and reusable cooling skin via laminating a polydimethylsiloxane film with a highly-scattering polyethylene aerogel. Owing to its high porosity of 97.9% and tailored pore size of 3.8 +- 1.4 micrometers, superior solar reflectance of 0.96 and high transparency to irradiated thermal energy of 0.8 can be achieved at a thickness of 2.7 mm. Combined with low thermal conductivity of 0.032 W/m/K of the aerogel, the cooling skin exerts midday sub-ambient temperature drops of 5-6 degrees in a metropolitan environment, with an estimated limit of 14 degrees under ideal service conditions. We envision that this generalized bilayer approach will construct a bridge from night-time to daytime radiative cooling and pave the way for economical, scalable, flexible and reusable cooling materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا