No Arabic abstract
As the Milky Way and its satellite system become more entrenched in near field cosmology efforts, the need for an accurate estimate of the Milky Way dark matter halos mass is increasingly critical. With the second and early third data releases of stellar proper motions from $Gaia$, several groups calculated full 6D phase-space information for the population of Milky Way satellite galaxies. Utilizing these data in comparison to subhalo properties drawn from the Phat ELVIS simulations, we constrain the Milky Way dark matter halo mass to be $sim 1-1.2 times 10^{12}$ M$_{odot}$. We find that the kinematics of subhalos drawn from more- or less-massive hosts (i.e. $> 1.2 times 10^{12}$ M$_{odot}$ or $< 10^{12}$ M$_{odot}$) are inconsistent with the observed velocities of the Milky Way satellites. The preferred host halo mass for the Milky Way is largely insensitive to the exclusion of systems associated the Large Magellanic Cloud, changes in galaxy formation thresholds, and variations in observational completeness. As more Milky Way satellites are discovered, their velocities (radial, tangential, and total) plus Galactocentric distances will provide further insight into the mass of the Milky Way dark matter halo.
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revolution thanks to planned and proposed astrometric, spectroscopic and photometric surveys, building on recent advances by the Gaia astrometric survey. Together, these new efforts will measure three-dimensional positions and velocities and numerous chemical abundances for stars to the MWs edge and well into the Local Group, leading to a complete multidimensional view of our Galaxy. Studies of the multidimensional Milky Way beyond the Gaia frontier---from the edge of the Galactic disk to the edge of our Galaxys dark matter halo---will unlock new scientific advances across astrophysics, from constraints on dark matter to insights into galaxy formation.
With the increasing numbers of large stellar survey projects, the quality and quantity of excellent tracers to study the Milky Way is rapidly growing, one of which is the classical Cepheids. Classical Cepheids are high precision standard candles with very low typical uncertainties ($<$ 3%) available via the mid-infrared period-luminosity relation. About 3500 classical Cepheids identified from OGLE, ASAS-SN, Gaia, WISE and ZTF survey data have been analyzed in this work, and their spatial distributions show a clear signature of Galactic warp. Two kinematical methods are adopted to measure the Galactic rotation curve in the Galactocentric distance range of $4lesssim R_{rm GC} lesssim 19$ kpc. Gently declining rotation curves are derived by both the proper motion (PM) method and 3-dimensional velocity vector (3DV) method. The largest sample of classical Cepheids with most accurate 6D phase-space coordinates available to date are modeled in the 3DV method, and the resulting rotation curve is found to decline at the relatively smaller gradient of ($-1.33pm0.1$) ${rm km,s^{-1},kpc^{-1}}$. Comparing to results from the PM method, a higher rotation velocity (($232.5pm0.83$) ${rm km,s^{-1}}$) is derived at the position of Sun in the 3DV method. The virial mass and local dark matter density are estimated from the 3DV method which is the more reliable method, $M_{rm vir} = (0.822pm0.052)times 10^{12},M_odot$ and $rho_{rm DM,odot} = 0.33pm0.03$ GeV ${rm cm^{-3}}$, respectively.
We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii $R_{340}$, is $533^{+54}_{-41}$ km/s (90% confidence) with an additional 5% systematic uncertainty, where $R_{340}$ is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for $M_{340}$, the mass interior to $R_{340}$ (dark matter and baryons), is $1.3^{+0.4}_{-0.3} times 10^{12}$ M$_odot$ (corresponding to $M_{200} = 1.6^{+0.5}_{-0.4} times 10^{12}$ M$_odot$). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.
We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III, from which we measure a mean radial velocity of v_hel = -102.3 +/- 0.4 (stat.) +/- 2.0 (sys.) km/s, a velocity dispersion of 0.1^+0.7_-0.1 km/s, and a mean metallicity of [Fe/H] = -2.42^+0.07_-0.08. The upper limit on the velocity dispersion is sigma < 1.5 km/s at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0 x 10^4 Msun. We cannot rule out mass-to-light ratios as large as 240 Msun/Lsun for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19 dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally-stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V=15.7 that is the brightest known member star of an ultra-faint satellite.
The ages, metallicities, alpha-elements and integrals of motion of globular clusters (GCs) accreted by the Milky Way from disrupted satellites remain largely unchanged over time. Here we have used these conserved properties in combination to assign 76 GCs to 5 progenitor satellite galaxies -- one of which we dub the Koala dwarf galaxy. We fit a leaky-box chemical enrichment model to the age-metallicity distribution of GCs, deriving the effective yield and the formation epoch of each satellite. Based on scaling relations of GC counts we estimate the original halo mass, stellar mass and mean metallicity of each satellite. The total stellar mass of the 5 accreted satellites contributed around 10$^{9}$ M$_{odot}$ in stars to the growth of the Milky Way but over 50% of the Milky Ways GC system. The 5 satellites formed at very early times and were likely accreted 8--11 Gyr ago, indicating rapid growth for the Milky Way in its early evolution. We suggest that at least 3 satellites were originally nucleated, with the remnant nucleus now a GC of the Milky Way. Eleven GCs are also identified as having formed ex-situ but could not be assigned to a single progenitor satellite.