No Arabic abstract
The ages, metallicities, alpha-elements and integrals of motion of globular clusters (GCs) accreted by the Milky Way from disrupted satellites remain largely unchanged over time. Here we have used these conserved properties in combination to assign 76 GCs to 5 progenitor satellite galaxies -- one of which we dub the Koala dwarf galaxy. We fit a leaky-box chemical enrichment model to the age-metallicity distribution of GCs, deriving the effective yield and the formation epoch of each satellite. Based on scaling relations of GC counts we estimate the original halo mass, stellar mass and mean metallicity of each satellite. The total stellar mass of the 5 accreted satellites contributed around 10$^{9}$ M$_{odot}$ in stars to the growth of the Milky Way but over 50% of the Milky Ways GC system. The 5 satellites formed at very early times and were likely accreted 8--11 Gyr ago, indicating rapid growth for the Milky Way in its early evolution. We suggest that at least 3 satellites were originally nucleated, with the remnant nucleus now a GC of the Milky Way. Eleven GCs are also identified as having formed ex-situ but could not be assigned to a single progenitor satellite.
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revolution thanks to planned and proposed astrometric, spectroscopic and photometric surveys, building on recent advances by the Gaia astrometric survey. Together, these new efforts will measure three-dimensional positions and velocities and numerous chemical abundances for stars to the MWs edge and well into the Local Group, leading to a complete multidimensional view of our Galaxy. Studies of the multidimensional Milky Way beyond the Gaia frontier---from the edge of the Galactic disk to the edge of our Galaxys dark matter halo---will unlock new scientific advances across astrophysics, from constraints on dark matter to insights into galaxy formation.
A brief review is given of different methods used to determine the pattern speeds of the Galactic bar and spiral arms. The Galactic bar rotates rapidly, with corotation about halfway between the Galactic center and the Sun, and outer Lindblad resonance not far from the solar orbit, R0. The Galactic spiral arms currently rotate with a distinctly slower pattern speed, such that corotation is just outside R0. Both structures therefore seem dynamically decoupled.
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semi-analytic model is based on that developed for the Millennium Simulation, and successfully reproduces the properties of galaxies on large scales, as well as those of the Milky Way. In this model, we are able to reproduce the luminosity function of the satellites around the Milky Way by preventing cooling in haloes with Vvir < 16.7 km/s (i.e. the atomic hydrogen cooling limit) and including the impact of the reionization of the Universe. The physical properties of our model satellites (e.g. mean metallicities, ages, half-light radii and mass-to-light ratios) are in good agreement with the latest observational measurements. We do not find a strong dependence upon the particular implementation of supernova feedback, but a scheme which is more efficient in galaxies embedded in smaller haloes, i.e. shallower potential wells, gives better agreement with the properties of the ultra-faint satellites. Our model predicts that the brightest satellites are associated with the most massive subhaloes, are accreted later (z $lta$ 1), and have extended star formation histories, with only 1 per cent of their stars made by the end of the reionization. On the other hand, the faintest satellites were accreted early, are dominated by stars with age > 10 Gyr, and a few of them formed most of their stars before the reionization was complete. Objects with luminosities comparable to those of the classical MW satellites are associated with dark matter subhaloes with a peak circular velocity $gta$ 10 km/s, in agreement with the latest constraints.
Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aquarius Project, which suggest that MW-sized halos should have at least 8 subhalos with V_max>30km/s. The absence of luminous satellites in such massive subhalos is thus puzzling and may present a challenge to the LCDM paradigm. We note, however, that the number of massive subhalos depends sensitively on the (poorly-known) virial mass of the Milky Way, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e., the number of subhalos as a function of u, the ratio of subhalo V_max to host halo virial velocity, V_200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1< u<0.5, N_sub(> u) is approximately Poisson-distributed about an average given by <N_sub>=10.2x( u/0.15)^(-3.11). This is slightly lower than in Aquarius halos, but consistent with recent results from the Phoenix Project. The probability that a LCDM halo has 3 or fewer subhalos with V_max above some threshold value, V_th, is then straightforward to compute. It decreases steeply both with decreasing V_th and with increasing halo mass. For V_th=30km/s, ~40% of M_halo=10^12 M_sun halos pass the test; fewer than 5% do so for M_halo>= 2x10^12 M_sun; and the probability effectively vanishes for M_halo>= 3x 10^12 M_sun. Rather than a failure of LCDM, the absence of massive subhalos might simply indicate that the Milky Way is less massive than is commonly thought.
The CO-H2 conversion factor (Xco; otherwise known as the X-factor) is observed to be remarkably constant in the Milky Way and in the Local Group (aside from the SMC). To date, our understanding of why Xco should be so constant remains poor. Using a combination of extremely high resolution (~ 1 pc) galaxy evolution simulations and molecular line radiative transfer calculations, we suggest that Xco displays a narrow range of values in the Galaxy due to the fact that molecular clouds share very similar physical properties. In our models, this is itself a consequence of stellar feedback competing against gravitational collapse. GMCs whose lifetimes are regulated by radiative feedback show a narrow range of surface densities, temperatures and velocity dispersions with values comparable to those seen in the Milky Way. As a result, the X-factors from these clouds show reasonable correspondence with observed data from the Local Group, and a relatively narrow range. On the other hand, feedback-free clouds collapse to surface densities that are larger than those seen in the Galaxy, and hence result in X-factors that are systematically too large compared to the Milky Ways. We conclude that radiative feedback within GMCs can generate cloud properties similar to those observed in the Galaxy, and hence a roughly constant Milky Way X-factor in normal, quiescent clouds.