Do you want to publish a course? Click here

Uniform Distribution And Normal Numbers

77   0   0.0 ( 0 )
 Added by N. A. Carella
 Publication date 2021
  fields
and research's language is English
 Authors N. A. Carella




Ask ChatGPT about the research

Let $alpha=0.a_1a_2a_3ldots$ be an irrational number in base $b>1$, where $0leq a_i<b$. The number $alpha in (0,1)$ is a $textit{normal number}$ if every block $(a_{n+1}a_{n+2}ldots a_{n+k})$ of $k$ digits occurs with probability $1/b^k$. A conditional proof of the normality of the real number $pi$ in base $10$ is presented in this note.



rate research

Read More

Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second difference -- between the numbers, which lie on these spiral-graphs. A mathematical analysis shows, that these spiral graphs are caused exclusively by quadratic polynomials. For example the well known Euler Polynomial x2+x+41 appears on the Square Root Spiral in the form of three spiral-graphs, which are defined by three different quadratic polynomials. All natural numbers,divisible by a certain prime factor, also lie on defined spiral graphs on the Square Root Spiral (or Spiral of Theodorus, or Wurzelspirale). And the Square Numbers 4, 9, 16, 25, 36 even form a highly three-symmetrical system of three spiral graphs, which divides the square root spiral into three equal areas. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. With the help of the Number-Spiral, described by Mr. Robert Sachs, a comparison can be drawn between the Square Root Spiral and the Ulam Spiral. The shown sections of his study of the number spiral contain diagrams, which are related to my analysis results, especially in regards to the distribution of prime numbers.
Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the Square Root Spiral (also named as the Spiral of Theodorus or Wurzel Spirale or Einstein Spiral). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36,... form a highly three-symmetrical system of three spiral graphs, which divides the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the golden mean (or golden section), which behaves as a self-avoiding-walk-constant in the lattice-like structure of the square root spiral.
268 - Harry K. Hahn 2008
The natural numbers divisible by the Prime Factors 2, 3, 5, 11, 13 and 17 lie on defined spiral graphs, which run through the Square Root Spiral. A mathematical analysis shows, that these spiral graphs are defined by specific quadratic polynomials. Basically all natural number which are divisible by the same prime factor lie on such spiral graphs. And these spiral graphs can be assigned to a certain number of Spiral Graph Systems, which have a defined spatial orientation to each other. This document represents a supplementation to my detailed introduction study to the Square Root Spiral, and it contains the missing diagrams and analyses, showing the distribution of the natural numbers divisible by 2, 3, 5, 11, 13 and 17 on the Square Root Spiral. My introduction study to the Square Root Spiral can be found in the arxiv-archive. The title of this study : The ordered distribution of the natural numbers on the Square Root Spiral.
72 - Nicolas Zumelzu 2020
From the more than two hundred partial orders for fuzzy numbers proposed in the literature, only a few are total. In this paper, we introduce the notion of admissible order for fuzzy numbers equipped with a partial order, i.e. a total order which refines the partial order. In particular, it is given special attention to the partial order proposed by Klir and Yuan in 1995. Moreover, we propose a method to construct admissible orders on fuzzy numbers in terms of linear orders defined for intervals considering a strictly increasing upper dense sequence, proving that this order is admissible for a given partial order. Finally, we use admissible orders to ranking the path costs in fuzzy weighted graphs.
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be explicitly specified, and the first few elements of the sequence will be written. Remarks on the Cantors nondenumerability proofs of 1873 and 1891 that the real numbers are noncountable will be given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا