Do you want to publish a course? Click here

Optical detection of the rapidly spinning white dwarf in V1460 Her

111   0   0.0 ( 0 )
 Added by Ingrid Pelisoli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accreting magnetic white dwarfs offer an opportunity to understand the interplay between spin-up and spin-down torques in binary systems. Monitoring of the white dwarf spin may reveal whether the white dwarf spin is currently in a state of near-equilibrium, or of uni-directional evolution towards longer or shorter periods, reflecting the recent history of the system and providing constraints for evolutionary models. This makes the monitoring of the spin history of magnetic white dwarfs of high interest. In this paper we report the results of a campaign of follow-up optical photometry to detect and track the 39 sec white dwarf spin pulses recently discovered in Hubble Space Telescope data of the cataclysmic variable V1460 Her. We find the spin pulsations to be present in g-band photometry at a typical amplitude of 0.4%. Under favourable observing conditions, the spin signal is detectable using 2-meter class telescopes. We measured pulse-arrival times for all our observations, which allowed us to derive a precise ephemeris for the white dwarf spin. We have also derived an orbital modulation correction that can be applied to the measurements. With our limited baseline of just over four years, we detect no evidence yet for spin-up or spin-down of the white dwarf, obtaining a lower limit of |P/Pdot|> 4e7 years, which is already 4 to 8 times longer than the timescales measured in two other cataclysmic variable systems containing rapidly rotating white dwarfs, AE Aqr and AR Sco.



rate research

Read More

We present time-resolved optical and ultraviolet spectroscopy and photometry of V1460~Her, an eclipsing cataclysmic variable with a 4.99,h orbital period and an overluminous K5-type donor star. The optical spectra show emission lines from an accretion disc along with absorption lines from the donor. We use these to measure radial velocities, which, together with constraints upon the orbital inclination from photometry, imply masses of $M_1=0.869pm0.006,mathrm{M}_odot$ and $M_2=0.295pm0.004,mathrm{M}_odot$ for the white dwarf and the donor. The radius of the donor, $R_2=0.43pm0.002,mathrm{R}_odot$, is $approx 50$ per cent larger than expected given its mass, while its spectral type is much earlier than the M3.5 type that would be expected from a main sequence star with a similar mass. HST spectra show strong $mathrm{N{small V}}$ 1240 A emission but no $mathrm{C{small IV}}$ 1550 A emission, evidence for CNO-processed material. The donor is therefore a bloated, over-luminous remnant of a thermal-timescale stage of high mass transfer and has yet to re-establish thermal equilibrium. Remarkably, the HST ultraviolet data also show a strong 30 per cent peak-to-peak, $38.9,$s pulsation that we explain as being due to the spin of the white dwarf, potentially putting V1460 Her in a similar category to the propeller system AE Aqr in terms of its spin frequency and evolutionary path. AE Aqr also features a post-thermal timescale mass donor, and V1460 Her may therefore be its weak magnetic field analogue since the accretion disc is still present, with the white dwarf spin-up a result of a recent high accretion rate.
We present optical photometry of the cataclysmic variable LAMOST J024048.51+195226.9 taken with the high-speed, five-band CCD camera HiPERCAM on the 10.4 m Gran Telescopio Canarias (GTC). We detect pulsations originating from the spin of its white dwarf, finding a spin period of 24.9328(38)s. The pulse amplitude is of the order of 0.2% in the g-band, below the detection limits of previous searches. This detection establishes LAMOST J024048.51+195226.9 as only the second white dwarf magnetic propeller system, a twin of its long-known predecessor, AE Aquarii. At 24.93s, the white dwarf in LAMOST J024048.51+195226.9 has the shortest known spin period of any cataclysmic variable star. The white dwarf must have a mass of at least 0.7MSun to sustain so short a period. The observed faintest u-band magnitude sets an upper limit on the white dwarfs temperature of ~25000K. The pulsation amplitudes measured in the five HiPERCAM filters are consistent with an accretion spot of ~30000K covering ~2% of the white dwarfs visible area, although much hotter and smaller spots cannot be ruled out.
White dwarfs represent the last stage of evolution of stars with mass less than about eight times that of the Sun and, like other stars, are often found in binaries. If the orbital period of the binary is short enough, energy losses from gravitational-wave radiation can shrink the orbit until the two white dwarfs come into contact and merge. Depending on the component masses, the merger can lead to a supernova of type Ia or result in a massive white dwarf. In the latter case, the white dwarf remnant is expected to be highly magnetised because of the strong magnetic dynamo that should arise during the merger, and be rapidly spinning from the conservation of the orbital angular momentum. Here we report observations of a white dwarf, ZTF J190132.9+145808.7, that exhibits these properties, but to an extreme: a rotation period of 6.94 minutes, a magnetic field ranging between 600 megagauss and 900 megagauss over its surface, and a stellar radius of about 2,100 km, slightly larger than the radius of the Moon. Such a small radius implies that the stars mass is close to the maximum white-dwarf mass, or Chandrasekhar mass. ZTF J190132.9+145808.7 is likely to be cooling through the Urca processes (neutrino emission from electron capture on sodium) because of the high densities reached in its core.
We have observed the eclipsing, post-common envelope white dwarf-brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the $H$ band, and a tentative detection in the $K_s$ band. Our analysis of the lightcurves and indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the $K_s$ band we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the $K_s$ band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries.
Mass transfer in an interacting binary will often strip the mass donor of its entire envelope and spin up the mass gainer to near critical rotation. The nearby B-type star Regulus represents a binary in the post-mass transfer stage: it is a rapid rotator with a very faint companion in a 40 d orbit. Here we present the results of a search for the spectral features of the stripped-down star in an extensive set of high S/N and high resolution spectra obtained with the CFHT/ESPaDOnS and TBL/NARVAL spectrographs. We first determine revised orbital elements in order to set accurate estimates of the orbital Doppler shifts at the times of observation. We then calculate cross-correlation functions of the observed and model spectra, and we search for evidence of the companion signal in the residuals after removal of the strong primary component. We detect a weak peak in the co-added residuals that has the properties expected for a faint pre-white dwarf. We use the dependence of the peak height and width on assumed secondary velocity semiamplitude to derive the semiamplitude, which yields masses of $M_1/M_odot = 3.7 pm 1.4$ and $M_2/M_odot = 0.31 pm 0.10$ (assuming orbital inclination equals the spin inclination of Regulus). We estimate the pre-white dwarf temperature $T_{rm eff} = (20 pm 4)$~kK through tests with differing temperature model spectra, and we find the radius $R_2/R_odot = 0.061 pm 0.011$ from the component temperatures and the flux ratio associated with the amplitude of the signal in the cross-correlation residuals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا