Do you want to publish a course? Click here

Found: a rapidly spinning white dwarf in LAMOST J024048.51+195226.9

101   0   0.0 ( 0 )
 Added by Ingrid Pelisoli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical photometry of the cataclysmic variable LAMOST J024048.51+195226.9 taken with the high-speed, five-band CCD camera HiPERCAM on the 10.4 m Gran Telescopio Canarias (GTC). We detect pulsations originating from the spin of its white dwarf, finding a spin period of 24.9328(38)s. The pulse amplitude is of the order of 0.2% in the g-band, below the detection limits of previous searches. This detection establishes LAMOST J024048.51+195226.9 as only the second white dwarf magnetic propeller system, a twin of its long-known predecessor, AE Aquarii. At 24.93s, the white dwarf in LAMOST J024048.51+195226.9 has the shortest known spin period of any cataclysmic variable star. The white dwarf must have a mass of at least 0.7MSun to sustain so short a period. The observed faintest u-band magnitude sets an upper limit on the white dwarfs temperature of ~25000K. The pulsation amplitudes measured in the five HiPERCAM filters are consistent with an accretion spot of ~30000K covering ~2% of the white dwarfs visible area, although much hotter and smaller spots cannot be ruled out.



rate research

Read More

Thorstensen (2020) recently argued that the cataclysmic variable (CV) LAMOST J024048.51+195226.9 may be a twin to the unique magnetic propeller system AE Aqr. If this is the case, two predictions are that it should display a short period white dwarf spin modulation, and that it should be a bright radio source. We obtained follow-up optical and radio observations of this CV, in order to see if this holds true. Our optical high-speed photometry does not reveal a white dwarf spin signal, but lacks the sensitivity to detect a modulation similar to the 33-s spin signal seen in AE Aqr. We detect the source in the radio, and measure a radio luminosity similar to that of AE Aqr and close to the highest so far reported for a CV. We also find good evidence for radio variability on a time scale of tens of minutes. Optical polarimetric observations produce no detection of linear or circular polarization. While we are not able to provide compelling evidence, our observations are all consistent with this object being a propeller system.
AE Aqr objects are a class of cataclysmic variable stars in which the rapidly rotating magnetosphere of the white dwarf (WD) primary centrifugally expels most infalling gas before it can accrete onto the WD. The expulsion of the accretion flow via this magnetic propeller extracts angular momentum from the WD and produces large-amplitude, aperiodic flares in optical photometry. The eponymous AE Aqr is the only confirmed member of this class of object, but recently, Thorstensen (2020) discovered a candidate AE Aqr system: LAMOST J024048.51+195226.9. Using survey photometry, we measure a refined orbital period for this system and identify a shallow, previously unrecognized eclipse during which the systems frequent AE Aqr-like flaring episodes cease. A dedicated follow-up study is still necessary to test the proposed AE Aqr classification for LAMOST J024048.51+195226.9, but should it be confirmed, the eclipse of its flare-production region will offer a new means of studying the magnetic propeller phenomenon.
Accreting magnetic white dwarfs offer an opportunity to understand the interplay between spin-up and spin-down torques in binary systems. Monitoring of the white dwarf spin may reveal whether the white dwarf spin is currently in a state of near-equilibrium, or of uni-directional evolution towards longer or shorter periods, reflecting the recent history of the system and providing constraints for evolutionary models. This makes the monitoring of the spin history of magnetic white dwarfs of high interest. In this paper we report the results of a campaign of follow-up optical photometry to detect and track the 39 sec white dwarf spin pulses recently discovered in Hubble Space Telescope data of the cataclysmic variable V1460 Her. We find the spin pulsations to be present in g-band photometry at a typical amplitude of 0.4%. Under favourable observing conditions, the spin signal is detectable using 2-meter class telescopes. We measured pulse-arrival times for all our observations, which allowed us to derive a precise ephemeris for the white dwarf spin. We have also derived an orbital modulation correction that can be applied to the measurements. With our limited baseline of just over four years, we detect no evidence yet for spin-up or spin-down of the white dwarf, obtaining a lower limit of |P/Pdot|> 4e7 years, which is already 4 to 8 times longer than the timescales measured in two other cataclysmic variable systems containing rapidly rotating white dwarfs, AE Aqr and AR Sco.
161 - Rene P. Breton 2011
We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal star of spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff = 14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun, and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond its terminal-age main sequence. The orbital period is quite short at 2.69802 days. The ingredients that are used in the analysis are the Kepler binary light curve, including the detection of the Doppler boosting effect; the NUV and FUV fluxes from the Galex images of this object; an estimate of the spectral type of the F-star companion; and evolutionary models of the companion designed to match its effective temperature and mean density. The light curve is modelled with a new code named Icarus which we describe in detail. Its features include the full treatment of orbital phase-resolved spectroscopy, Doppler boosting, irradiation effects and transits/eclipses, which are particularly suited to irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its likely evolutionary history. We infer that this type of system, containing a bloated hot white dwarf, is the direct descendant of an Algol-type binary. In spite of this basic understanding of the origin of KOI 1224, we discuss a number of problems associated with producing this type of system with this short of an short orbital period.
Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to their LAMOST spectra to estimate their distances and measure their stellar parameters, namely the white dwarf effective temperatures, surface gravities and masses, and the secondary star spectral types. Results. We identify 121 LAMOST WDMS binaries, 80 of which are new discoveries, and estimate the sample to be sim90 per cent complete. The LAMOST and SDSS WDMS binaries are found to be statistically different. However, this result is not due to the different target selection criteria of both surveys, but likely a simple consequence of the different observing conditions. Thus, the LAMOST population is found at considerably shorter distances (sim50-450 pc) and is dominated by systems containing early-type companions and hot white dwarfs. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا