No Arabic abstract
GRS 1915+105 has been in a bright flux state for more than 2 decades, but in 2018 a significant drop in flux was observed, partly due to changes in the central engine along with increased X-ray absorption. The aim of this work is to explore how X-ray spectro-polarimetry can be used to derive the basic geometrical properties of the absorbing and reflecting matter. In particular, the expected polarisation of the radiation reflected off the disc and the putative outflow is calculated. We use textit{NuSTAR} data collected after the flux drop to derive the parameters of the system from hard X-ray spectroscopy. The spectroscopic parameters are then used to derive the expected polarimetric signal, using results from a MonteCarlo radiative transfer code both in the case of neutral and fully ionised matter. From the spectral analysis, we find that the continuum emission becomes softer with increasing flux, and that in all flux levels the obscuring matter is highly ionised. This analysis, on the other hand, confirms that spectroscopy alone is unable to put constraints on the geometry of the reflectors. Simulations show that X-ray polarimetric observations, like those that will be provided soon by the Imaging X-ray Polarimetry Explorer (IXPE), will help to determine the geometrical parameters which are left unconstrained by the spectroscopic analysis.
The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk, and B ~ 10^(4-5) Gauss if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model (Shakura & Sunyaev 1973). We discuss these results in terms of fundamental disk physics and black hole accretion modes.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on the full data set on the source obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the {it RXTE}/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius (R_in), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes eta~0.68 +/- 0.35 and eta ~ 1.12 +/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while a large portion of the steady-hard observations match the hard state criteria when the disk fraction constraint is neglected.
The X-ray spectrum of GRS 1915+105 is known to have a ``broad iron spectral feature in the spectral hard state. Similar spectral features are often observed in Active Galactic Nuclei (AGNs) and other black-hole binaries (BHBs), and several models have been proposed for explaining it. In order to distinguish spectral models, time variation provides an important key. In AGNs, variation amplitude has been found to drop significantly at the iron K-energy band at timescales of ~10 ks. If spectral variations of black-holes are normalized by their masses, the spectral variations of BHBs at timescales of sub-seconds should exhibit similar characteristics to those of AGNs. In this paper, we investigated spectral variations of GRS 1915+105 at timescales down to ~10 ms. This was made possible for the first time with the Suzaku XIS Parallel-sum clocking (P-sum) mode, which has the CCD energy-resolution as well as a time-resolution of 7.8 ms. Consequently, we found that the variation amplitude of GRS 1915+105 does not drop at the iron K-energy band at any timescales from 0.06 s to 63000 s, and that the entire X-ray flux and the iron feature are independently variable at timescales of hours. These are naturally understood in the framework of the ``partial covering model, in which variation timescales of the continuum flux and partial absorbers are independent. The difference of energy dependence of the variation amplitude between AGN and BHB is presumably due to different mechanisms of the outflow winds, i.e., the partial absorbers are due to UV-line driven winds (AGN) or thermally-driven winds (BHB).
The evolution of the C-type low frequency quasi-periodic oscillations (LFQPOs) and associated time lag in transient black hole sources as a function of time can be explained by variation of the Compton cloud size in a Two Component Advective Flow solution (TCAF). A similar study of a persistent source, GRS~1915+105, has not been attempted. We fit the evolution of QPOs with propagatory oscillating shock (POS) solution for two sets of so-called $chi$-state observations and find that the shock steadily recedes with almost constant velocity when QPO frequency is decreasing and the spectrum is hardening. The shock moves inward with a constant velocity $v_0=473.0$ cm s$^{-1}$ and $v_0=400.0$ cm s$^{-1}$ respectively in these two cases, when the QPO frequency is increasing and the spectrum softens. This behavior is similar to what was observed in XTE~J1550-564 during the 1998 outburst. The time lag measured at the QPO frequency varies in a similar way as the size of the Compton cloud. Most interestingly, in both the cases, the lag switches sign (hard lag to soft lag) at a QPO frequency of $sim 2.3 - 2.5$ Hz irrespective of the energy of photons. We find, at very low frequencies $< 1$ Hz, the Comptonizing Efficiency (CE) increases with QPO frequency and at higher QPO frequencies the trend is opposite. The time lags become mostly positive at all energies when CE is larger than $sim 0.85%$ for both the sources.