Do you want to publish a course? Click here

Evolution of Accretion Disc Geometry of GRS~1915+105 during its $chi$ state as revealed by TCAF solution

116   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The evolution of the C-type low frequency quasi-periodic oscillations (LFQPOs) and associated time lag in transient black hole sources as a function of time can be explained by variation of the Compton cloud size in a Two Component Advective Flow solution (TCAF). A similar study of a persistent source, GRS~1915+105, has not been attempted. We fit the evolution of QPOs with propagatory oscillating shock (POS) solution for two sets of so-called $chi$-state observations and find that the shock steadily recedes with almost constant velocity when QPO frequency is decreasing and the spectrum is hardening. The shock moves inward with a constant velocity $v_0=473.0$ cm s$^{-1}$ and $v_0=400.0$ cm s$^{-1}$ respectively in these two cases, when the QPO frequency is increasing and the spectrum softens. This behavior is similar to what was observed in XTE~J1550-564 during the 1998 outburst. The time lag measured at the QPO frequency varies in a similar way as the size of the Compton cloud. Most interestingly, in both the cases, the lag switches sign (hard lag to soft lag) at a QPO frequency of $sim 2.3 - 2.5$ Hz irrespective of the energy of photons. We find, at very low frequencies $< 1$ Hz, the Comptonizing Efficiency (CE) increases with QPO frequency and at higher QPO frequencies the trend is opposite. The time lags become mostly positive at all energies when CE is larger than $sim 0.85%$ for both the sources.

rate research

Read More

Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the $rho$ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 sec limit cycle oscillations. By including new information provided by the reflection spectrum, and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500-5000 km/s, and possibly two more with velocities reaching 20,000 km/s (~0.06 c). The column densities are ~5e22 cm$^{-2}$. An upper limit to the wind response time of 2 sec is measured, implying a launch radius of <6e10 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290 - 1300 rg from the black hole. Both datasets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
GRS 1915+105 has been in a bright flux state for more than 2 decades, but in 2018 a significant drop in flux was observed, partly due to changes in the central engine along with increased X-ray absorption. The aim of this work is to explore how X-ray spectro-polarimetry can be used to derive the basic geometrical properties of the absorbing and reflecting matter. In particular, the expected polarisation of the radiation reflected off the disc and the putative outflow is calculated. We use textit{NuSTAR} data collected after the flux drop to derive the parameters of the system from hard X-ray spectroscopy. The spectroscopic parameters are then used to derive the expected polarimetric signal, using results from a MonteCarlo radiative transfer code both in the case of neutral and fully ionised matter. From the spectral analysis, we find that the continuum emission becomes softer with increasing flux, and that in all flux levels the obscuring matter is highly ionised. This analysis, on the other hand, confirms that spectroscopy alone is unable to put constraints on the geometry of the reflectors. Simulations show that X-ray polarimetric observations, like those that will be provided soon by the Imaging X-ray Polarimetry Explorer (IXPE), will help to determine the geometrical parameters which are left unconstrained by the spectroscopic analysis.
134 - J. M. Miller 2016
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk, and B ~ 10^(4-5) Gauss if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model (Shakura & Sunyaev 1973). We discuss these results in terms of fundamental disk physics and black hole accretion modes.
Low Mass X-Ray Binaries (LMXBs) are systems in which a compact object accretes from a binary companion star via an accretion disk. The X-ray properties of LMXBs show strong variability over timescales ranging from milliseconds to decades, much of which is tied to the extreme environment of the inner accretion disk, hence an understanding of this behaviour is key to understanding how matter behaves in such an environment. GRS 1915+105 and MXB 1730-335 are two LMXBs which show particularly unusual variability. GRS 1915+105 shows a large number of distinct classes of second-to-minute scale variability, consisting of repeated patterns of dips and flares. MXB 1730 shows Type II X-ray Bursts; minute-scale increases in X-ray intensity with a sudden onset and a slow decay. More recently two new objects, IGR J17091-3624 and GRO J1744-28 have been shown to display similar behaviours. In this thesis I present a new framework with which to classify variability in IGR J17091. I perform a comparison study between this source and GRS 1915. In GRS 1915, hard X-rays lag soft X-rays in all variability classes; in IGR J17091, I find that the sign of this lag varies between variability classes. Additionally, while GRS 1915+105 accretes at close to its Eddington Limit, I find that IGR J17091-3624 accretes at only ~5-33% of its Eddington Limit. I also perform a study of variability in GRO J1744 and find that it is more complex than in MXB 1730, consisting of at least 4 separate phenomena which may have separate physical origins. One of these phenomena, `Structured Bursting, consists of patterns of flares and dips similar to those seen in GRS 1915 and IGR J17091. I compare these types of variability and discuss the possibility of a physical link. I also present the alternative hypothesis that Structured Bursting is caused my hiccup accretion similar to that seen in systems approaching the propeller regime.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been successfull in explaining the energy-dependent time lags of the broad-band noise component in stellar mass black-holes and active galactic nuclei. We have recently shown that Comptonisation can explain the spectral-timing properties of the kilo-hertz (kHz) QPOs observed in neutron star (NS) LMXBs. It is therefore worth exploring whether the same family of models would be as successful in explaining the low-frequency QPOs. In this work, we use a Comptonisation model to study the frequency dependence of the phase lags of the type-C QPO in the BH LMXB GRS 1915+105. The phase lags of the QPO in GRS 1915+105 make a transition from hard to soft at a QPO frequency of around 1.8 Hz. Our model shows that at high QPO frequencies a large corona of ~ 100-150 R_g covers most of the accretion disc and makes it 100% feedback dominated, thus producing soft lags. As the observed QPO frequency decreases, the corona gradually shrinks down to around 3-17 R_g, and at 1.8 Hz feedback onto the disc becomes inefficient leading to hard lags. We discuss how changes in the accretion geometry affect the timing properties of the type-C QPO.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا