Do you want to publish a course? Click here

Memory Based Video Scene Parsing

84   0   0.0 ( 0 )
 Added by Zhenchao Jin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video scene parsing is a long-standing challenging task in computer vision, aiming to assign pre-defined semantic labels to pixels of all frames in a given video. Compared with image semantic segmentation, this task pays more attention on studying how to adopt the temporal information to obtain higher predictive accuracy. In this report, we introduce our solution for the 1st Video Scene Parsing in the Wild Challenge, which achieves a mIoU of 57.44 and obtained the 2nd place (our team name is CharlesBLWX).



rate research

Read More

Compared with image scene parsing, video scene parsing introduces temporal information, which can effectively improve the consistency and accuracy of prediction. In this paper, we propose a Spatial-Temporal Semantic Consistency method to capture class-exclusive context information. Specifically, we design a spatial-temporal consistency loss to constrain the semantic consistency in spatial and temporal dimensions. In addition, we adopt an pseudo-labeling strategy to enrich the training dataset. We obtain the scores of 59.84% and 58.85% mIoU on development (test part 1) and testing set of VSPW, respectively. And our method wins the 1st place on VSPW challenge at ICCV2021.
Many compelling video processing effects can be achieved if per-pixel depth information and 3D camera calibrations are known. However, the success of such methods is highly dependent on the accuracy of this scene-space information. We present a novel, sampling-based framework for processing video that enables high-quality scene-space video effects in the presence of inevitable errors in depth and camera pose estimation. Instead of trying to improve the explicit 3D scene representation, the key idea of our method is to exploit the high redundancy of approximate scene information that arises due to most scene points being visible multiple times across many frames of video. Based on this observation, we propose a novel pixel gathering and filtering approach. The gathering step is general and collects pixel samples in scene-space, while the filtering step is application-specific and computes a desired output video from the gathered sample sets. Our approach is easily parallelizable and has been implemented on GPU, allowing us to take full advantage of large volumes of video data and facilitating practical runtimes on HD video using a standard desktop computer. Our generic scene-space formulation is able to comprehensively describe a multitude of video processing applications such as denoising, deblurring, super resolution, object removal, computational shutter functions, and other scene-space camera effects. We present results for various casually captured, hand-held, moving, compressed, monocular videos depicting challenging scenes recorded in uncontrolled environments.
169 - Tianyi Wu , Sheng Tang , Rui Zhang 2019
Scene parsing is challenging as it aims to assign one of the semantic categories to each pixel in scene images. Thus, pixel-level features are desired for scene parsing. However, classification networks are dominated by the discriminative portion, so directly applying classification networks to scene parsing will result in inconsistent parsing predictions within one instance and among instances of the same category. To address this problem, we propose two transform units to learn pixel-level consensus features. One is an Instance Consensus Transform (ICT) unit to learn the instance-level consensus features by aggregating features within the same instance. The other is a Category Consensus Transform (CCT) unit to pursue category-level consensus features through keeping the consensus of features among instances of the same category in scene images. The proposed ICT and CCT units are lightweight, data-driven and end-to-end trainable. The features learned by the two units are more coherent in both instance-level and category-level. Furthermore, we present the Consensus Feature Network (CFNet) based on the proposed ICT and CCT units, and demonstrate the effectiveness of each component in our method by performing extensive ablation experiments. Finally, our proposed CFNet achieves competitive performance on four datasets, including Cityscapes, Pascal Context, CamVid, and COCO Stuff.
This paper addresses the problem of geometric scene parsing, i.e. simultaneously labeling geometric surfaces (e.g. sky, ground and vertical plane) and determining the interaction relations (e.g. layering, supporting, siding and affinity) between main regions. This problem is more challenging than the traditional semantic scene labeling, as recovering geometric structures necessarily requires the rich and diverse contextual information. To achieve these goals, we propose a novel recurrent neural network model, named Hierarchical Long Short-Term Memory (H-LSTM). It contains two coupled sub-networks: the Pixel LSTM (P-LSTM) and the Multi-scale Super-pixel LSTM (MS-LSTM) for handling the surface labeling and relation prediction, respectively. The two sub-networks provide complementary information to each other to exploit hierarchical scene contexts, and they are jointly optimized for boosting the performance. Our extensive experiments show that our model is capable of parsing scene geometric structures and outperforming several state-of-the-art methods by large margins. In addition, we show promising 3D reconstruction results from the still images based on the geometric parsing.
We present a scene parsing method that utilizes global context information based on both the parametric and non- parametric models. Compared to previous methods that only exploit the local relationship between objects, we train a context network based on scene similarities to generate feature representations for global contexts. In addition, these learned features are utilized to generate global and spatial priors for explicit classes inference. We then design modules to embed the feature representations and the priors into the segmentation network as additional global context cues. We show that the proposed method can eliminate false positives that are not compatible with the global context representations. Experiments on both the MIT ADE20K and PASCAL Context datasets show that the proposed method performs favorably against existing methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا