Do you want to publish a course? Click here

Consensus Feature Network for Scene Parsing

170   0   0.0 ( 0 )
 Added by Tianyi Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Scene parsing is challenging as it aims to assign one of the semantic categories to each pixel in scene images. Thus, pixel-level features are desired for scene parsing. However, classification networks are dominated by the discriminative portion, so directly applying classification networks to scene parsing will result in inconsistent parsing predictions within one instance and among instances of the same category. To address this problem, we propose two transform units to learn pixel-level consensus features. One is an Instance Consensus Transform (ICT) unit to learn the instance-level consensus features by aggregating features within the same instance. The other is a Category Consensus Transform (CCT) unit to pursue category-level consensus features through keeping the consensus of features among instances of the same category in scene images. The proposed ICT and CCT units are lightweight, data-driven and end-to-end trainable. The features learned by the two units are more coherent in both instance-level and category-level. Furthermore, we present the Consensus Feature Network (CFNet) based on the proposed ICT and CCT units, and demonstrate the effectiveness of each component in our method by performing extensive ablation experiments. Finally, our proposed CFNet achieves competitive performance on four datasets, including Cityscapes, Pascal Context, CamVid, and COCO Stuff.



rate research

Read More

In this paper, we address the semantic segmentation task with a new context aggregation scheme named emph{object context}, which focuses on enhancing the role of object information. Motivated by the fact that the category of each pixel is inherited from the object it belongs to, we define the object context for each pixel as the set of pixels that belong to the same category as the given pixel in the image. We use a binary relation matrix to represent the relationship between all pixels, where the value one indicates the two selected pixels belong to the same category and zero otherwise. We propose to use a dense relation matrix to serve as a surrogate for the binary relation matrix. The dense relation matrix is capable to emphasize the contribution of object information as the relation scores tend to be larger on the object pixels than the other pixels. Considering that the dense relation matrix estimation requires quadratic computation overhead and memory consumption w.r.t. the input size, we propose an efficient interlaced sparse self-attention scheme to model the dense relations between any two of all pixels via the combination of two sparse relation matrices. To capture richer context information, we further combine our interlaced sparse self-attention scheme with the conventional multi-scale context schemes including pyramid pooling~citep{zhao2017pyramid} and atrous spatial pyramid pooling~citep{chen2018deeplab}. We empirically show the advantages of our approach with competitive performances on five challenging benchmarks including: Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff
238 - Tianyi Wu , Yu Lu , Yu Zhu 2020
Recently, context reasoning using image regions beyond local convolution has shown great potential for scene parsing. In this work, we explore how to incorporate the linguistic knowledge to promote context reasoning over image regions by proposing a Graph Interaction unit (GI unit) and a Semantic Context Loss (SC-loss). The GI unit is capable of enhancing feature representations of convolution networks over high-level semantics and learning the semantic coherency adaptively to each sample. Specifically, the dataset-based linguistic knowledge is first incorporated in the GI unit to promote context reasoning over the visual graph, then the evolved representations of the visual graph are mapped to each local representation to enhance the discriminated capability for scene parsing. GI unit is further improved by the SC-loss to enhance the semantic representations over the exemplar-based semantic graph. We perform full ablation studies to demonstrate the effectiveness of each component in our approach. Particularly, the proposed GINet outperforms the state-of-the-art approaches on the popular benchmarks, including Pascal-Context and COCO Stuff.
Scene parsing from images is a fundamental yet challenging problem in visual content understanding. In this dense prediction task, the parsing model assigns every pixel to a categorical label, which requires the contextual information of adjacent image patches. So the challenge for this learning task is to simultaneously describe the geometric and semantic properties of objects or a scene. In this paper, we explore the effective use of multi-layer feature outputs of the deep parsing networks for spatial-semantic consistency by designing a novel feature aggregation module to generate the appropriate global representation prior, to improve the discriminative power of features. The proposed module can auto-select the intermediate visual features to correlate the spatial and semantic information. At the same time, the multiple skip connections form a strong supervision, making the deep parsing network easy to train. Extensive experiments on four public scene parsing datasets prove that the deep parsing network equipped with the proposed feature aggregation module can achieve very promising results.
Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a set of dense feature vectors is computed which encodes regions of multiple sizes centered on each pixel. The feature extractor is a multiscale convolutional network trained from raw pixels. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average purity of the class distributions, hence maximizing the overall likelihood that each segment will contain a single object. The convolutional network feature extractor is trained end-to-end from raw pixels, alleviating the need for engineered features. After training, the system is parameter free. The system yields record accuracies on the Stanford Background Dataset (8 classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170 classes) while being an order of magnitude faster than competing approaches, producing a 320 times 240 image labeling in less than 1 second.
Text detection, the key technology for understanding scene text, has become an attractive research topic. For detecting various scene texts, researchers propose plenty of detectors with different advantages: detection-based models enjoy fast detection speed, and segmentation-based algorithms are not limited by text shapes. However, for most intelligent systems, the detector needs to detect arbitrary-shaped texts with high speed and accuracy simultaneously. Thus, in this study, we design an efficient pipeline named as MT, which can detect adhesive arbitrary-shaped texts with only a single binary mask in the inference stage. This paper presents the contributions on three aspects: (1) a light-weight detection framework is designed to speed up the inference process while keeping high detection accuracy; (2) a multi-perspective feature module is proposed to learn more discriminative representations to segment the mask accurately; (3) a multi-factor constraints IoU minimization loss is introduced for training the proposed model. The effectiveness of MT is evaluated on four real-world scene text datasets, and it surpasses all the state-of-the-art competitors to a large extent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا