Do you want to publish a course? Click here

Fundamental parameters of the eclipsing binary DD CMa and evidence for mass exchange

497   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed photometric and spectroscopic analysis of DD CMa, based on published survey photometry and new spectroscopic data. We find an improved orbital period of $P_mathrm{o}= 2.0084530 pm 0.0000006 ~mathrm{d}$. Our spectra reveal H$beta$ and H$alpha$ absorptions with weak emission shoulders and we also find color excess in the WISE multiband photometry, interpreted as signatures of circumstellar matter. We model the $V$-band orbital light curve derived from the ASAS and ASAS-SN surveys, assuming a semidetached configuration and using the mass ratio and temperature of the hotter star derived from our spectroscopic analysis. Our model indicates that the system consists of a B 2.5 dwarf and a B 9 giant of radii 3.2 and 3.7 $mathrm{R_{odot}}$, respectively, orbiting in a circular orbit of radius 6.75 $mathrm{R_{odot}}$. We also found $M_{mathrm{c}} = 1.7 pm 0.1 ~mathrm{M_{odot}}$, $T_{mathrm{c}} = 11350 pm 100 ~mathrm{K}$ and $M_{mathrm{h}} = 6.4 pm 0.1 ~mathrm{M_{odot}}$, $T_{mathrm{h}} = 20000 pm 500 ~mathrm{K}$, for the cooler and hotter star, respectively. We find broad single emission peaks in H$alpha$ and H$beta$ after subtracting the synthetic stellar spectra. Our results are consistent with mass exchange between the stars, and suggest the existence of a stream of gas being accreted onto the early B-type star.



rate research

Read More

72 - J. Southworth 2004
The study of detached eclipsing binaries is one of the most powerful ways to investigate the properties of individual stars and stellar systems. We present preliminary masses, radii and effective temperatures for the eclipsing binary WW Aurigae, which is composed of two metallic-lined A-type stars. We also reanalyse the data on HD 23642, an A-type eclipsing binary member of the Pleiades open cluster with a metallic-lined component, and determine its distance to be 139 +/- 4 pc. This is in agreement with the traditional Pleiades distance, but in disagreement with distance to the Pleiades, and to HD 23642 itself, derived from Hipparcos trigonometrical parallaxes.
We present ULTRACAM photometry and X-Shooter spectroscopy of the eclipsing double white dwarf binary CSS 41177, the only such system that is also a double-lined spectroscopic binary. Combined modelling of the light curves and radial velocities yield masses and radii for both white dwarfs without the need to assume mass-radius relations. We find that the primary white dwarf has a mass of M1 = 0.38(2) Msun and a radius of R1 = 0.0222(4) Rsun. The secondary white dwarfs mass and radius are M2 = 0.32(1) Msun and R2 = 0.0207(4) Rsun, and its temperature and surface gravity (T2 = 11678(313) K, log(g2) = 7.32(2)) put it close to the white dwarf instability strip. However, we find no evidence for pulsations to roughly 0.5% relative amplitude. Both masses and radii are consistent with helium white dwarf models with thin hydrogen envelopes of 0.0001 Mstar. The two stars will merge in 1.14 Gyr due to angular momentum loss via gravitational wave emission.
The triple stellar system delta Vel (composed of two A-type and one F-type main sequence stars) is particularly interesting as it contains one of the nearest and brightest eclipsing binaries. It therefore presents a unique opportunity to determine independently the physical properties of the three components of the system, as well as its distance. We aim at determining the fundamental parameters (masses, radii, luminosities, rotational velocities) of the three components of delta Vel, as well as the parallax of the system, independently from the existing Hipparcos} measurement. We determined dynamical masses from high-precision astrometry of the orbits of Aab-B and Aa-Ab using adaptive optics (VLT/NACO) and optical interferometry (VLTI/AMBER). The main component is an eclipsing binary composed of two early A-type stars in rapid rotation. We modeled the photometric and radial velocity measurements of the eclipsing pair Aa-Ab using a self consistent method based on physical parameters (mass, radius, luminosity, rotational velocity). From our self-consistent modeling of the primary and secondary components of the delta Vel A eclipsing pair, we derive their fundamental parameters with a typical accuracy of 1%. We find that they have similar masses, respectively 2.43+/-0.02Msol and 2.27+/-0.02Msol. The physical parameters of the tertiary component (delta Vel B) are also estimated, although to a lower accuracy. We obtain a parallax of 39.8+/-0.4mas for the system, in satisfactory agreement (-1.2 sigma) with the Hipparcos value (40.5+/-0.4mas). The physical parameters we derive represent a consistent set of constraints for the evolutionary modeling of this system. The agreement of the parallax we measure with the Hipparcos value to a 1% accuracy is also an interesting confirmation of the true accuracy of these two independent measurements.
V923 Sco is a bright ($V$ = 5.91), nearby ($pi$ = 15.46$pm$0.40 mas) southern eclipsing binary. Because both components are slow rotators, the minimum masses of the components are known with 0.2% precision from spectroscopy. The system seems ideal for very precise mass, radius, and luminosity determinations and, owing to its proximity and long orbital period ($sim$ 34.8 days), promises to be resolved with long-baseline interferometry. The principal aim is very accurate determinations of absolute stellar parameters for both components of the eclipsing binary and a model-independent determination of the distance.} New high-precision photometry of both eclipses of V923 Sco with the MOST satellite was obtained. The system was spatially resolved with the VLTI AMBER, PIONIER, and GRAVITY instruments at nine epochs. Combining the projected size of the spectroscopic orbit (in km) and visual orbit (in mas) the distance to the system is derived. Simultaneous analysis of photometric, spectroscopic, and interferometric data was performed to obtain a robust determination of the absolute parameters. Very precise absolute parameters of the components were derived in spite of the parameter correlations. The primary component is found to be overluminous for its mass. Combining spectroscopic and interferometric observations enabled us to determine the distance to V923 Sco with better than 0.2% precision, which provides a stringent test of Gaia parallaxes. It is shown that combining spectroscopic and interferometric observations of nearby eclipsing binaries can lead to extremely accurate parallaxes and stellar parameters.
We present new photometric and spectroscopic observations for 2M 1533+3759 (= NSVS 07826147). It has an orbital period of 0.16177042 day, significantly longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM systems. Spectroscopic analysis of the hot primary yields Teff = 29230 +/- 125 K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution from the secondary is due to the surprisingly strong reflection effect. Light curve modeling produced several solutions corresponding to different values of the system mass ratio, q(M2/M1), but only one is consistent with a core helium burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun. 2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an unusually low mass for an sdB star. SdB stars with masses significantly lower than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were theoretically predicted by Han et al. (2002, 2003), but observational evidence has only recently begun to confirm the existence of such stars. The existence of core helium burning stars with masses lower than 0.40--0.43 Msun implies that at least some sdB progenitors have initial main sequence masses of 1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The secondary is a main sequence M5 star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا