Do you want to publish a course? Click here

The nearby eclipsing stellar system delta Velorum III. Self-consistent fundamental parameters and distance

150   0   0.0 ( 0 )
 Added by Antoine Merand
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The triple stellar system delta Vel (composed of two A-type and one F-type main sequence stars) is particularly interesting as it contains one of the nearest and brightest eclipsing binaries. It therefore presents a unique opportunity to determine independently the physical properties of the three components of the system, as well as its distance. We aim at determining the fundamental parameters (masses, radii, luminosities, rotational velocities) of the three components of delta Vel, as well as the parallax of the system, independently from the existing Hipparcos} measurement. We determined dynamical masses from high-precision astrometry of the orbits of Aab-B and Aa-Ab using adaptive optics (VLT/NACO) and optical interferometry (VLTI/AMBER). The main component is an eclipsing binary composed of two early A-type stars in rapid rotation. We modeled the photometric and radial velocity measurements of the eclipsing pair Aa-Ab using a self consistent method based on physical parameters (mass, radius, luminosity, rotational velocity). From our self-consistent modeling of the primary and secondary components of the delta Vel A eclipsing pair, we derive their fundamental parameters with a typical accuracy of 1%. We find that they have similar masses, respectively 2.43+/-0.02Msol and 2.27+/-0.02Msol. The physical parameters of the tertiary component (delta Vel B) are also estimated, although to a lower accuracy. We obtain a parallax of 39.8+/-0.4mas for the system, in satisfactory agreement (-1.2 sigma) with the Hipparcos value (40.5+/-0.4mas). The physical parameters we derive represent a consistent set of constraints for the evolutionary modeling of this system. The agreement of the parallax we measure with the Hipparcos value to a 1% accuracy is also an interesting confirmation of the true accuracy of these two independent measurements.



rate research

Read More

199 - Pierre Kervella 2008
- Context: The triple stellar system delta Vel system presents a significant infrared excess, whose origin is still being debated. A large infrared bow shock has been discovered using Spitzer/MIPS observations. Although it appears as a significant contributor to the measured IR excess, the possibility exists that a circumstellar IR excess is present around the stars of the system. - Aims: The objective of the present VISIR and NACO observations is to identify whether one of the stars of the delta Vel system presents a circumstellar photometric excess in the thermal IR domain and to quantify it. - Methods: We observed delta Vel using the imaging modes of the ESO/VLT instruments VISIR (in BURST mode) and NACO to resolve the A-B system (0.6 separation) and obtain the photometry of each star. We also obtained one NACO photometry epoch precisely at the primary (annular) eclipse of delta Vel Aa by Ab. - Results: Our photometric measurements with NACO (2.17 mic), complemented by the existing visible photometry allowed us to reconstruct the spectral energy distribution of the three stars. We then compared the VISIR photometry (8.6-12.8 mic) to the expected photospheric emission from the three stars at the corresponding wavelengths. - Conclusions: We can exclude the presence of a circumstellar thermal infrared excess around delta Vel A or B down to a few percent level. This supports the conclusions of Gaspar et al. (2008) that the IR excess of delta Vel has an interstellar origin, although a cold circumstellar disk could still be present. In addition, we derive the spectral types of the three stars Aa, Ab, and B (respectively A2IV, A4V and F8V), and we estimate the age of the system around 400-500 Myr.
We present a detailed photometric and spectroscopic analysis of DD CMa, based on published survey photometry and new spectroscopic data. We find an improved orbital period of $P_mathrm{o}= 2.0084530 pm 0.0000006 ~mathrm{d}$. Our spectra reveal H$beta$ and H$alpha$ absorptions with weak emission shoulders and we also find color excess in the WISE multiband photometry, interpreted as signatures of circumstellar matter. We model the $V$-band orbital light curve derived from the ASAS and ASAS-SN surveys, assuming a semidetached configuration and using the mass ratio and temperature of the hotter star derived from our spectroscopic analysis. Our model indicates that the system consists of a B 2.5 dwarf and a B 9 giant of radii 3.2 and 3.7 $mathrm{R_{odot}}$, respectively, orbiting in a circular orbit of radius 6.75 $mathrm{R_{odot}}$. We also found $M_{mathrm{c}} = 1.7 pm 0.1 ~mathrm{M_{odot}}$, $T_{mathrm{c}} = 11350 pm 100 ~mathrm{K}$ and $M_{mathrm{h}} = 6.4 pm 0.1 ~mathrm{M_{odot}}$, $T_{mathrm{h}} = 20000 pm 500 ~mathrm{K}$, for the cooler and hotter star, respectively. We find broad single emission peaks in H$alpha$ and H$beta$ after subtracting the synthetic stellar spectra. Our results are consistent with mass exchange between the stars, and suggest the existence of a stream of gas being accreted onto the early B-type star.
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
Accurately determining the properties of stars is of prime importance for characterizing stellar populations in our Galaxy. The field of asteroseismology has been thought to be particularly successful in such an endeavor for stars in different evolutionary stages. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos parallaxes. Our distance determinations agree to better than 5%, while measurements of spectroscopic effective temperatures and interferometric radii also validate our results. We briefly discuss the potential of our technique for stellar population analysis and models of Galactic Chemical Evolution.
We present a preliminary spectroscopic analysis of the binary system V577Oph, observed during the summer of 2007 on the 2.6m NOT telescope on La Palma. We have obtained time series spectroscopic observations, which show clear binary motion as well as radial velocity variations due to pulsation in the primary star. By modelling the radial velocities we determine a full orbital solution of the system, which yields M_A sin^3 i = 1.562 +/- 0.012 M_solar and M_B sin^3 i = 1.461 +/- 0.020 M_solar. An estimate of inclination from photometry yields a primary mass of 1.6 M_solar. Using this derived mass, and the known pulsation frequency we can impose a lower limit of 1 Gyr on the age of the system, and constrain the parameters of the oscillation mode. We show that with further analysis of the spectra (extracting the atmospheric parameters), tighter constraints could be imposed on the age, metallicity and the mode parameters. This work emphasizes the power that a single pulsation frequency can have for constraining stellar parameters in an eclipsing binary system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا