Do you want to publish a course? Click here

Study of $D_{s}^{+} rightarrow K^{+} K^{-} pi^{+}$ decay

93   0   0.0 ( 0 )
 Added by Chu-Wen Xiao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the $D_{s}^{+} rightarrow K^{+} K^{-} pi^{+}$ decay theoretically with the final state interactions, which is based on the chiral unitary approach and takes into account the external and internal $W$-emission mechanisms at the quark level. Only considering three resonances contributions, the $f_0(980)$ in $S$-wave, the $bar {K}^{*}(892)^{0}$ and $phi(1020)$ in $P$-wave, one can make a good description of the recent experimental data from BESIII Collaboration, where the contribution from $S$-wave is found to be small. Besides, we also make a calculation of the corresponding branching fractions, which are consistent with the results of BESIII Collaboration and Particle Data Group.



rate research

Read More

We report an amplitude analysis and branching fraction measurement of $D_{s}^{+} rightarrow K^{+}K^{-}pi^{+}$ decay using a data sample of 3.19 $rm fb^{-1}$ recorded with BESIII detector at a center-of-mass energy of 4.178 GeV. We perform a model-independent partial wave analysis in the low $K^{+}K^{-}$ mass region to determine the $K^{+}K^{-}$ S-wave lineshape, followed by an amplitude analysis of our very pure high-statistics sample. The amplitude analysis provides an accurate determination of the detection efficiency allowing us to measure the branching fraction ${cal B}(D_{s}^{+} rightarrow K^{+}K^{-}pi^{+}) = (5.47pm0.08_{{rm stat}}pm0.13_{{rm sys}})%$.
Within the quasi-two-body decay model, we study the localized $CP$ violation and branching fraction of the four-body decay $bar{B}^0rightarrow [K^-pi^+]_{S/V}[pi^+pi^-]_{V/S} rightarrow K^-pi^+pi^-pi^+$ when $K^-pi^+$ and $pi^-pi^+$ pair invariant masses are $0.35<m_{K^-pi^+}<2.04 , mathrm{GeV}$ and $0<m_{pi^-pi^+}<1.06, mathrm{GeV}$, with the pairs being dominated by the $bar{K}^*_0(700)^0$, $bar{K}^*(892)^0$, $bar{K}^*(1410)^0$, $bar{K}^*_0(1430)$ and $bar{K}^*(1680)^0$, and $f_0(500)$, $rho^0(770)$ , $omega(782)$ and $f_0(980)$ resonances, respectively. When dealing with the dynamical functions of these resonances, $f_0(500)$, $rho^0(770)$, $f_0(980)$ and $bar{K}^*_0(1430)$ are modeled with the Bugg model, Gounaris-Sakurai function, Flatt$acute{mathrm{e}}$ formalism and LASS lineshape, respectively, while others are described by the relativistic Breit-Wigner function. Adopting the end point divergence parameters $rho_Ain[0,0.5]$ and $phi_Ain[0,2pi]$, our predicted results are $mathcal{A_{CP}}(bar{B}^0rightarrow K^-pi^+pi^+pi^-)in[-0.383,0.421]$ and $mathcal{B}(bar{B}^0rightarrow K^-pi^+pi^+pi^-)in[7.36,199.69]times10^{-8}$ based on the hypothetical $qbar{q}$ structures for the scalar mesons in the QCD factorization approach. Meanwhile, we calculate the $CP$ violating asymmetries and branching fractions of the two-body decays $bar{B}^0rightarrow SV(VS)$ and all the individual four-body decays $bar{B}^0rightarrow SV(VS) rightarrow K^-pi^+pi^-pi^+$, respectively. Our theoretical results for the two-body decays $bar{B}^0rightarrow bar{K}^*(892)^0$$f_0(980)$, $bar{B}^0rightarrow bar{K}^*_0(1430)^0$$omega(782)$, $bar{B}^0rightarrow bar{K}^*(892)^0f_0(980)$, $bar{B}^0rightarrowbar{K}^*_0(1430)^0rho$,
Using an $e^{+}e^{-}$ annihilation data sample corresponding to an integrated luminosity of $3.19~mathrm{fb}^{-1}$ and collected at a center-of-mass energy $sqrt{s} = 4.178~mathrm{GeV}$ with the BESIII detector, we measure the absolute branching fractions $mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) = (1.425pm0.038_{rm stat.}pm0.031_{rm syst.})%$ and $mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+}) =(1.485pm0.039_{rm stat.}pm0.046_{rm syst.})%$. The branching fraction of $D_{s}^{+} rightarrow K_{S}^{0}K^{+}$ is compatible with the world average and that of $D_{s}^{+} rightarrow K_{L}^{0}K^{+}$ is measured for the first time. We present the first measurement of the $K_{S}^{0}$-$K_{L}^{0}$ asymmetry in the decays $D_{s}^{+} rightarrow K_{S,L}^{0}K^{+}$, and $R(D_{s}^{+} rightarrow K_{S,L}^{0}K^{+})=frac{mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) -mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+})}{mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) +mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+})}= (-2.1pm1.9_{rm stat.}pm1.6_{rm syst.})%$. In addition, we measure the direct $CP$ asymmetries $A_{rm CP}(D_{s}^{pm} rightarrow K_{S}^{0}K^{pm}) = (0.6pm2.8_{rm stat.}pm0.6_{rm syst.})%$ and $A_{rm CP}(D_{s}^{pm} rightarrow K_{L}^{0}K^{pm}) = (-1.1pm2.6_{rm stat.}pm0.6_{rm syst.})%$.
The three-body charmless hadronic decay $B^0_s rightarrow K^{0}_{rm S} pi^{+}pi^{-}$ provides a number of novel possibilities to search for CP violation effects and test the Standard Model of particle physics. These include fits to the Dalitz-plot distributions of the decay-time-integrated final state, decay-time-dependent (but without initial state flavour tagging) fits to the Dalitz-plot distribution, as well as full decay-time-dependent and flavour tagged fits. The relative sensitivities of these different approaches are investigated.
170 - R. Aaij , B. Adeva , M. Adinolfi 2014
Measurements of the effective lifetimes in the $B_{s}^{0} rightarrow K^{+}K^{-}$, $B^{0} rightarrow K^{+}pi^{-}$ and $B_{s}^{0} rightarrow pi^{+}K^{-}$ decays are presented using $1.0~mathrm{fb^{-1}}$ of $pp$ collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are $tau_{B_{s}^{0} rightarrow K^{+}K^{-}}$ = $1.407~pm~0.016~pm~0.007~mathrm{ps}$, $tau_{B^{0} rightarrow K^{+}pi^{-}}$ = $1.524~pm~0.011~pm~0.004~mathrm{ps}$, $tau_{B_{s}^{0} rightarrow pi^{+}K^{-}}$ = $1.60~pm~0.06~pm~0.01~mathrm{ps}$. This is the most precise determination to date of the effective lifetime in the $B_{s}^{0} rightarrow K^{+}K^{-}$ decay and provides constraints on contributions from physics beyond the Standard Model to the $B_{s}^{0}$ mixing phase and the width difference $DeltaGamma_{s}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا