Do you want to publish a course? Click here

Erythrocyte sedimentation: Fracture and collapse of a high-volume-fraction soft-colloid gel

399   0   0.0 ( 0 )
 Added by Alexis Darras
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The erythrocyte sedimentation rate is one of the oldest medical diagnostic methods whose physical mechanisms remain debatable up to date. Using both light microscopy and mesoscale cell-level simulations, we show that erythrocytes form a soft-colloid gel. Furthermore, the high volume fraction of erythrocytes, their deformability, and weak attraction lead to unusual properties of this gel. A theoretical model for the gravitational collapse is developed, whose predictions are in agreement with detailed macroscopic measurements of the interface velocity.



rate research

Read More

The erythrocyte (or red blood cell) sedimentation rate (ESR) is commonly interpreted as a measure of cell aggregation and as a biomarker of inflammation. It is well known that an increase of fibrinogen concentration, an aggregation-inducing protein for erythrocytes, leads to an increase of the sedimentation rate of erythrocytes, which is generally explained through the formation and faster settling of large disjoint aggregates. However, many aspects of erythrocyte sedimentation conform well with the collapse of a colloidal gel rather than with the sedimentation of disjoint aggregates. Using experiments and cell-level numerical simulations, we systematically investigate the dependence of ESR on fibrinogen concentration and its relation to the microstructure of the gel-like erythrocyte suspension. We show that for physiological aggregation interactions, an increase in the attraction strength between cells results in a cell network with larger void spaces. This geometrical change in the network structure occurs due to anisotropic shape and deformability of erythrocytes and leads to an increased gel permeability and faster sedimentation. Our results provide a comprehensive relation between the ESR and the cell-level structure of erythrocyte suspensions and support the gel hypothesis in the interpretation of blood sedimentation.
The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, `tune and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E.coli, cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force.
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this superselectivity, however a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster Resonance Energy Transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a non-linear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions and we confirm that the time-scale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide new, dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equation, the porous medium is characterised by a single length scale $ell$ --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of $ell$. We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit $elltoinfty$, corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, $ellto 0$, corresponding to a space filling gel, is singular and not equivalent to Darcys equation, which cannot account for self-propulsion.
390 - Sushil Dubey 2020
Rheological properties of a material often require to be probed under extensional deformation. Examples include fibrous materials such as spider-silk, high-molecular weight polymer melts, and the contractile response of living cells. Such materials have strong molecular-level anisotropies which are either inherent or are induced by an imposed extension. However, unlike shear rheology, which is well-established, techniques to perform extensional rheology are currently under development and setups are often custom-designed for the problem under study. In this article, we present a versatile device that can be used to conduct extensional deformation studies of samples at microscopic scales with simultaneous imaging. We discuss the operational features of this device and present a number of applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا