Do you want to publish a course? Click here

Floquet topological $d+id$ superconductivity induced by chiral many-body interactions

70   0   0.0 ( 0 )
 Added by Sota Kitamura
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how $d$-wave superconductivity is changed when illuminated by circularly-polarised light (CPL) in the repulsive Hubbard model in the strong-coupling regime. We adopt the Floquet formalism for the Gutzwiller-projected effective Hamiltonian with the time-periodic Schrieffer-Wolff transformation. We find that CPL induces a topological superconductivity with a $d+id$ pairing, which arises from the chiral spin coupling and the three-site term generated by the CPL. The latter effect remains significant even for low frequencies and low intensities of the CPL. This is clearly seen in the obtained phase diagram against the laser intensity and temperature for various frequencies red-detuned from the Hubbard $U$, with the transient dynamics also examined. The phenomenon revealed here can provide a novel way to induce a topological superconductivity.



rate research

Read More

Lacunar spinel GaTa$_4$Se$_8$ is a unique example of spin-orbit coupled Mott insulator described by molecular $j_{text{eff}}!=!3/2$ states. It becomes superconducting at T$_c$=5.8K under pressure without doping. In this work, we show, this pressure-induced superconductivity is a realization of a new type topological phase characterized by spin-2 Cooper pairs. Starting from first-principles density functional calculations and random phase approximation, we construct the microscopic model and perform the detailed analysis. Applying pressure is found to trigger the virtual interband tunneling processes assisted by strong Hund coupling, thereby stabilizing a particular $d$-wave quintet channel. Furthermore, we show that its Bogoliubov quasiparticles and their surface states exhibit novel topological nature. To verify our theory, we propose unique experimental signatures that can be measured by Josephson junction transport and scanning tunneling microscope. Our findings open up new directions searching for exotic superconductivity in spin-orbit coupled materials.
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure. The superconducting phase results from the out-of-equilibrium excitation of carriers in the presence of Coulomb repulsion and is stabilized by coupling the driven semiconductor to a bosonic or fermionic thermal bath. We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced. The emergence of novel superconducting states, such as the chiral $p$-wave pairing, results from the Floquet engineering of the interaction. This is realized by modifying the form of the Coulomb interaction by projecting it into the states that are resonant with the pump frequency. We show that the resulting unconventional pairing in our system can host topologically protected chiral bound states. We discuss a promising experimental platform to realize our proposal and detect the signatures of the emergent superconducting state.
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnetic texture crystals with a periodically-repeating primitive cell of the helix, whirl, and skyrmion types. Our analysis is relevant for a wide range of layered materials and hybrid devices, and accounts for both strong and weak, as well as crystalline topological phases. We identify a multitude of accessible topological phases which harbor flat, uni- or bi-directional, (quasi-)helical, or chiral MF edge modes. This rich variety of MFs originates from the interplay between topological phases with gapped and nodal bulk energy spectra, with the resulting types of spectra and MFs controlled by the size of the pairing and magnetic gaps.
413 - J. Zhu , J. L. Zhang , P. P. Kong 2013
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.
We discuss how strongly interacting higher-order symmetry protected topological (HOSPT) phases can be characterized from the entanglement perspective: First, we introduce a topological many-body invariant which reveals the non-commutative algebra between flux operator and $C_n$ rotations. We argue that this invariant denotes the angular momentum carried by the instanton which is closely related to the discrete Wen-Zee response and fractional corner charge. Second, we define a new entanglement property, dubbed `higher-order entanglement, to scrutinize and differentiate various higher-order topological phases from a hierarchical sequence of the entanglement structure. We support our claims by numerically studying a super-lattice Bose-Hubbard model that exhibits different HOSPT phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا