Do you want to publish a course? Click here

BM UMa: a middle shallow contact binary at pre-transition stage of evolution from W-type to A-type

114   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, all unpublished time series photometric data of BM UMa ($q sim$ 2.0, P = 0.2712,d) from available archives were re-investigated together with new data taken from the TNT-2.4m of the Thai National Observatory (TNO). Based on period analysis, there is a short-term variation superimposed on the long-term period decrease. The trend of period change can be fitted with a downward parabolic curve indicating a period decrease at a rate of $mathrm{d}P/mathrm{d}t = -3.36(pm 0.02)times10^{-8}$ d $textrm{yr}^{-1}$. This long-term period decrease can be explained by mass transfer from the more massive component ($M_2 sim 0.79 M_{odot}$) to the less massive one ($M_1 sim 0.39 M_{odot}$), combination with AML. For photometric study, we found that the binary consists of K0,V stars and at the middle shallow contact phase with evolution of fill-out factor from 8.8,% (in 2007) to 23.2,% (in 2020). Those results suggest that the binary is at pre-transition stage of evolution from W-type to A-type, agreeing to the results of statistical study of W-type contact binaries. The mass of $M_2$ will be decreased close to or below $M_1$ and the mass ratio will be decreased ($q < 1.0$). By this way, the binary will evolve into A-type as a deeper normal over-contact system with period increase. Finally the binary will end as a merger or a rapid-rotating single star when the mass ratio meet the critical value ($q < 0.094$), as well as produce a red nova.



rate research

Read More

ROTSE1 J164341.65+251748.1 was photometrically observed in the V band during three epochs with the 0.84-m telescope of the San Pedro Martir Observatory in Mexico. Based on additional BVR photometry, we find that the primary star has a spectral type around G0V. The light curve of the system is typical of a W~UMa type binary stars and has an orbital period of $sim$ 0.323 days. In an effort to gain a better understanding of the binary system and determine its physical properties, we analyzed the light curve with the Wilson and Devinney method. We found that ROTSE1 J164341.65+251748.1 has a mass ratio of $sim$ 0.34 and that the less massive component is over 230 K hotter than the primary star. The inclination of the system is $sim$ 84.6 degrees, and the {bf degree} of over-contact is 11%. The analysis shows the presence of variable bright spots on the primary star.
The first four-color light curves of V868 Mon in the $B$ $V$ $R_c$ and $I_c$ bands are presented and analyzed by using the Wilson-Devinney method of the 2013 version. It is discovered that V868 Mon is an A-subtype contact binary (f=$58.9,%$) with a large temperature difference of 916$K$ between the two components. Using the eight new times of light minimum determined by the authors together with those collected from literatures, the authors found that the general trend of the observed-calculate ($O$-$C$) curve shows a upward parabolic variation that corresponds to a long-term increase in the orbital period at a rate of $dP/dt=9.38times{10^{-7}}daycdot year^{-1}$. The continuous increase may be caused by a mass transfer from the less massive component to the more massive one.
This study is an attempt to determine the metallicities of WUMa-type binary stars using spectroscopy. ~4,500 spectra collected at the David Dunlap Observatory were subject to the same Broadening Function processing to determine the combined line strength in the spectral window centered on the MgI triplet (5080-5285A). Individual integrated BFs were phase averaged to derive a single line-strength indicator. The sample was limited to 90 EW binaries with the strict phase-constancy of colors and without spectral contamination by companions. The best defined results were obtained for a F-type sub-sample (0.32<(B-V)0<0.62) of 52 stars for which the BF strengths could be interpolated in the model predictions. The metallicities, [M/H], for the F-type sub-sample indicate abundances roughly similar to the solar [M/H], but with a large scatter which is partly due to combined random and systematic errors. Because of a color trend resulting from limitations in our approach, we set the scale of metallicities to correspond to that derived from the m_1 index of the Stromgren photometry for F-type binaries. The trend-adjusted [M/H]1 are distributed within -0.65<[M/H]1<+0.50, with the spread reflecting genuine metallicity differences between stars. One half of the F-sub-sample binaries have [M/H]1 within -0.37<[M/H]1 +0.10, a median of -0.04 and a mean of -0.10, with a tail towards low metallicities, and a possible bias against very high metallicities. A parallel study of kinematic data, utilizing the most reliable and recently obtained proper motion and radial velocity data for 78 stars of the full sample, shows that the F-type sub-sample binaries have similar kinematic properties to solar neighborhood, thin-disk dwarfs with ages about 3 - 5.5 Gyr. The F-type binaries which appear to be older than the rest tend to have systematically smaller mass-ratios than most of the EW binaries of the same period.
New CCD photometric light curves of short period (P=0.285d) eclipsing binary RW Dor are presented. The observations performed with the PROMPT-8 robotic telescope at CTIO in Chile from March 2015 to March 2017. The other eclipse timings were obtained from the 2.15-m JS telescope at CASLEO, San Juan, Argentina in December 2011. By light-curve analysis, it is found that RW Dor is a W-type shallow contact binary with a fill-out factor $f sim 11%$ and high mass ratio $q sim 1.587$ (1/q = 0.63), where the hotter component is the less massive one ($M_1 sim 0.52M_{odot}$ and $M_2 sim 0.82M_{odot}$). For orbital period investigation, the new fifteen eclipse times and those in previous published were compiled. Based on $O-C$ analysis with very weak evidence suggests that a long-term period decrease with a rate of $mathrm{d}P/mathrm{d}t = -9.61times10^{-9}$ d $textrm{yr}^{-1}$ is superimposed on a cyclic variation ($A_3$ = 0.0054 days and $P_3$ = 49.9 yrs). The long-term period decrease can be interpreted as mass transfer from the more massive component to the less massive one or combine with the angular momentum loss (AML) via magnetic braking. In addition, with the marginal contact phase, high mass ratio (1/q $>$ 0.4) and the long-term period decrease, all suggest that RW Dor is a newly formed contact binary via a Case A mass transfer and it will evolve into a deeper normal contact binary. If the cyclic change is correct, the light-travel time effect via the presence of a cool third body will be more plausible to explain for this.
60 - D. R. S. Boyd 2016
Using multicolour photometry we have confirmed the binary nature of the new W-type W UMa eclipsing binary VSX J053024.8+842243 and established its primary eclipse ephemeris to be HJD = 2455924.38150(26) + 0.4322929(1) * E. Using the light curve modelling code PHOEBE and published data on the evolution of W-type contact binaries we found the primary and secondary components to have masses 0.50 Msun and 1.44 Msun, radii 0.87 Rsun and 1.42 Rsun, luminosities 0.98 Lsun and 1.91 Lsun, temperatures 6145 K and 5702 K and binary orbit inclination 59.4{deg}. We found the distance to the binary to be 511 parsec, its E(B-V) colour excess 0.04 and its intrinsic (B-V) colour index 0.62. A low resolution spectrum corrected for interstellar reddening confirmed its spectral type as G2V.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا