Do you want to publish a course? Click here

Strain-Modulated Interlayer Charge and Energy Transfers in MoS2/WS2 Heterobilayer

92   0   0.0 ( 0 )
 Added by Joon-Seok Kim
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Excitonic properties in 2D heterobilayers are closely governed by charge transfer (CT) and excitonic energy transfer (ET) at van der Waals interfaces. Various means have been employed to modulate the interlayer CT and ET, including electrical gating and modifying interlayer spacing, but with limited extent in their controllability. Here, we report a novel method to modulate these transfers in MoS2/WS2 heterobilayer by applying compressive strain under hydrostatic pressure. Raman and photoluminescence measurements, combined with density functional theory calculations show pressure-enhanced interlayer interaction of the heterobilayer. Photoluminescence enhancement factor {eta} of WS2 in heterobilayer decreases by five times up to ~4 GPa, suggesting a strong ET, whereas it increases by an order of magnitude at higher pressures and reaches almost unity, indicating enhanced CT. Theoretical calculations show that orbital switching in the conduction bands is responsible for the modulation of the transfers. Our findings provide a compelling approach towards effective mechanical control of CT and ET in 2D excitonic devices.

rate research

Read More

The transition-metal dichalcogenides (TMD) MoS2 and WS2 show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain through mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that similar electromechanical properties as in monolayer and bulk TMDs are found for large diameter TMD single- (SWNT) and multi-walled nanotubes (MWNTs). The semiconductor-metal transition occurs at elongations of 16 %. We show that Raman spectroscopy is an excellent tool to determine the strain of the nanotubes and hence monitor the progress of that nanoelectromechanical experiment in situ. TMD MWNTs show twice the electric conductance compared to SWNTs, and each wall of the MWNTs contributes to the conductance proportional to its diameter.
Van der Waals (vdW) heterostructures synthesized through the chemical vapor deposition (CVD) method allow creation and tuning of intriguing electronic and optical properties of two- dimensional (2D) materials, the knowledge of which is critical for a wide range of potential applications. Here we report our scanning tunneling microscopy/spectroscopy (STM/STS) study of as-grown MoS2 monolayer and WS2/MoS2 heterobilayer on SiO2. The heterobilayer appears smoother than the MoS2 monolayer, with root mean square (RMS) roughness of 0.230 +- 0.021 nm in the former and 0.329 +- 0.033 nm in the latter. For the first time, to our knowledge, we directly observed a continuous interface between the MoS2 monolayer and the top layer of the heterobilayer with atomic resolution. This finding contrasts to the previously reported open edges in the top layer of the heterobilayer. Our STS results and density functional theory (DFT) calculations revealed the band gaps of the heterobilayer and the MoS2 monolayer.
We present in-depth measurements of the electronic band structure of the transition-metal dichalcogenides (TMDs) MoS2 and WS2 using angle-resolved photoemission spectroscopy, with focus on the energy splittings in their valence bands at the K point of the Brillouin zone. Experimental results are interpreted in terms of our parallel first-principles computations. We find that interlayer interaction only weakly contributes to the splitting in bulk WS2, resolving previous debates on its relative strength. We additionally find that across a range of TMDs, the band gap generally decreases with increasing magnitude of the valence-band splitting, molecular mass, or ratio of the out-of-plane to in-plane lattice constant. Our results provide an important reference for future studies of electronic properties of MoS2 and WS2 and their applications in spintronics and valleytronics devices.
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and transition metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because 2D MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type-II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here we report the first experimental observation of ultrafast charge transfer in photo-excited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond (fs) pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled 2D layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel 2D devices for optoelectronics and light harvesting.
Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) in the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kohm*um and 0.5 kohm*um, respectively. The significant reduction of the Rc is attributed to the achieved high electron doping density thus significant reduction of Schottky barrier width. As a proof-ofconcept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 uA/um, an on/off ratio of 4*106, and a peak field-effect mobility of 60 cm2/V*s. This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nano-electronic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا