Do you want to publish a course? Click here

Discovery of a strong 6.6 keV emission feature from EXO 1745$-$248 after the superburst in 2011 October

399   0   0.0 ( 0 )
 Added by Wataru Iwakiri
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discover an unidentified strong emission feature in the X-ray spectrum of EXO 1745$-$248 obtained by RXTE at 40 hr after the peak of a superburst. The structure was centered at 6.6 keV and significantly broadened with a large equivalent width of 4.3 keV, corresponding to a line photon flux of 4.7 $times$ 10$^{-3}$ ph cm$^{-2}$ s$^{-1}$. The 3-20 keV spectrum was reproduced successfully by a power law continuum with narrow and broad (2.7 keV in FWHM) Gaussian emission components. Alternatively, the feature can be described by four narrow Gaussians, centered at 5.5 keV, 6.5 keV, 7.5 keV and 8.6 keV. Considering the strength and shape of the feature, it is unlikely to have originated from reflection of the continuum X-rays by some optically thick materials, such as an accretion disk. Moreover, the intensity of the emission structure decreased significantly with an exponential time scale of 1 hr. The feature was not detected in an INTEGRAL observation performed 10 h before the RXTE observation with a line flux upper limit of 1.5 $times$ 10$^{-3}$ ph cm$^{-2}$ s$^{-1}$. The observed emission structure is consistent with gravitationally redshifted charge exchange emission from Ti, Cr, Fe, and Co. We suggest that the emission results from a charge exchange interaction between a highly metal-enriched fall back ionized burst wind and an accretion disk, at a distance of $sim$60 km from the neutron star. If this interpretation is correct, the results provide new information on the understanding of nuclear burning processes during thermonuclear X-ray bursts.



rate research

Read More

We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation of its properties using smaller data segments with and without the shift-and-add technique. The quality (Q) factor occasionally significantly varies within short ranges of frequency and time. A high Q-factor (264.5 +- 38.5) of the QPO is found for a 200 s time segment, which might be the largest value reported in the literature. We argue that an effective way to rule out kHz QPO models is to observationally find such high Q-factors, even for a short duration, as many models cannot explain a high coherence. However, as we demonstrate, the shift-and-add technique cannot find a very high Q-factor which appears for a short period of time. This shows that the coherences of kHz QPOs can be higher than the already high values reported using this technique, implying further constraints on models. We also discuss the energy dependence of fractional rms amplitude and Q-factor of the kHz QPO.
We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that EXO 1745-248 is an atoll source, and report the discovery of a ~ 0.45 Hz low-frequency quasi-periodic oscillation and ~ 10 Hz peaked noises. If it is an atoll, this source is unusual because (1) instead of a `C-like curve, it traced a clear overall clockwise hysteresis curve in each of the colour-colour diagram and the hardness-intensity diagram; and (2) the source took at least 2.5 months to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. The shape of the hysteresis track was intermediate between the characteristic `q-like curves of several black hole systems and `C-like curves of atolls, implying that EXO 1745-248 is an important source for the unification of the black hole and neutron star accretion processes.
121 - M. Matranga 2017
CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_Xapprox10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {xmm} and {igr}, offers the opportunity to characterize the hard X-ray spectrum during {exo} outburst. METHODS - In this paper we report on quasi-simultaneous {xmm} and {igr} observations of the X-ray transient {exo} located in the globular cluster Terzan 5, performed ten days after the beginning of the outburst (on 2015 March 16th) shown by the source between March and June 2015. The source was caught in a hard state, emitting a 0.8-100 keV luminosity of $simeq10^{37}$~{lumcgs}. RESULTS - The spectral continuum was dominated by thermal Comptonization of seed photons with temperature $kT_{in}simeq1.3$ keV, by a cloud with moderate optical depth $tausimeq2$ and electron temperature $kT_esimeq 40$ keV. A weaker soft thermal component at temperature $kT_{th}simeq0.6$--0.7 keV and compatible with a fraction of the neutron star radius was also detected. A rich emission line spectrum was observed by the EPIC-pn on-board {xmm}; features at energies compatible with K-$alpha$ transitions of ionized sulfur, argon, calcium and iron were detected, with a broadness compatible with either thermal Compton broadening or Doppler broadening in the inner parts of an accretion disk truncated at $20pm6$ gravitational radii from the neutron star. Strikingly, at least one narrow emission line ascribed to neutral or mildly ionized iron is needed to model the prominent emission complex detected between 5.5 and 7.5 keV. (Abridged)
119 - F.R. Ferraro 2015
We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Directors Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.
As one of the brightest active blazars in both X-ray and very high energy $gamma$-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for $gamma$-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest $gamma$-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 $sigma$ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the $gamma$-ray flux above 1 TeV by a factor of 6.6$pm$2.2 from its steady emission. In particular, the $gamma$-ray flux above 8 TeV is detected with a significance better than 4 $sigma$. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of $gamma$-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and $gamma$-rays are also investigated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا