Do you want to publish a course? Click here

Hysteresis in the spectral states of the neutron star low-mass X-ray binary EXO 1745-248

193   0   0.0 ( 0 )
 Added by Arunava Mukherjee
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that EXO 1745-248 is an atoll source, and report the discovery of a ~ 0.45 Hz low-frequency quasi-periodic oscillation and ~ 10 Hz peaked noises. If it is an atoll, this source is unusual because (1) instead of a `C-like curve, it traced a clear overall clockwise hysteresis curve in each of the colour-colour diagram and the hardness-intensity diagram; and (2) the source took at least 2.5 months to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. The shape of the hysteresis track was intermediate between the characteristic `q-like curves of several black hole systems and `C-like curves of atolls, implying that EXO 1745-248 is an important source for the unification of the black hole and neutron star accretion processes.



rate research

Read More

We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation of its properties using smaller data segments with and without the shift-and-add technique. The quality (Q) factor occasionally significantly varies within short ranges of frequency and time. A high Q-factor (264.5 +- 38.5) of the QPO is found for a 200 s time segment, which might be the largest value reported in the literature. We argue that an effective way to rule out kHz QPO models is to observationally find such high Q-factors, even for a short duration, as many models cannot explain a high coherence. However, as we demonstrate, the shift-and-add technique cannot find a very high Q-factor which appears for a short period of time. This shows that the coherences of kHz QPOs can be higher than the already high values reported using this technique, implying further constraints on models. We also discuss the energy dependence of fractional rms amplitude and Q-factor of the kHz QPO.
120 - F.R. Ferraro 2015
We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Directors Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.
We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra (0.5 - 10 keV) in those states with an absorbed power-law model, we found photon indices of Gamma ~ 1, significantly lower than the Gamma = 1.5 - 2.0 typically seen when such systems are in their so called hard state. For individual sources very hard spectra were already previously identified but here we show for the first time that likely our sources were in a distinct spectral state (i.e., different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e., up-scattering of soft photons due to hot electrons) then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Gamma as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. (2015). We confirm their general results in that also our sample of sources follow the same track as the other neutron star systems, although we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.
125 - Jessamyn L. Allen 2015
Tracking the spectral evolution of transiently accreting neutron stars between outburst and quiescence probes relatively poorly understood accretion regimes. Such studies are challenging because they require frequent monitoring of sources with luminosities below the thresholds of current all-sky X-ray monitors. We present the analysis of over 30 observations of the neutron star low-mass X-ray binary SAX J1750.8-2900 taken across four years with the X-ray telescope aboard Swift. We find spectral softening with decreasing luminosity both on long ($sim$1 year) and short ($sim$days to week) timescales. As the luminosity decreases from $4times10^{36}$ erg s$^{-1}$ to $ sim1times10^{35} $ erg s$^{-1}$ (0.5-10 keV), the power law photon index increases from from 1.4 to 2.9. Although not statistically required, our spectral fits allow an additional soft component that displays a decreasing temperature as the luminosity decreases from $4 times 10^{36} $ to $6 times 10^{34}$ erg s$^{-1}$. Spectral softening exhibited by SAX J1750.8-2900 is consistent both with accretion emission whose spectral shape steepens with decreasing luminosity and also with being dominated by a changing soft component, possibly associated with accretion onto the neutron star surface, as the luminosity declines.
141 - N.V. Gusinskaia 2017
We present quasi-simultaneous radio (VLA) and X-ray ($Swift$) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9$-$342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright ($232 pm 4 mu$Jy at $10$ GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state ($19 pm 4 mu$Jy). The source then was undetected in radio (< $13 mu$Jy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence ($L_X = 10^{34-35}$ erg s$^{-1}$) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with $beta > 0.7$ (where $L_R propto L_X^{beta}$). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at $L_X < 10^{35}$ erg s$^{-1}$ than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا