Do you want to publish a course? Click here

A New Classical Link Invariant defined via Virtual Links and Quantum Invariants of 3-Manifolds with Boundary

54   0   0.0 ( 0 )
 Added by Eiji Ogasa
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We introduce new topological quantum invariants of compact oriented 3-manifolds with boundary where the boundary is a disjoint union of two identical surfaces. The invariants are constructed via surgery on manifolds of the form $F times I$ where $I$ denotes the unit interval. Since virtual knots and links are represented as links in such thickened surfaces, we are able also to construct invariants in terms of virtual link diagrams (planar diagrams with virtual crossings). These invariants are the first meaningful, nontrivial, and calculable examples of quantum invariants of 3-manifolds with non-vacuous boundary. We give a new invariant of classical links in the 3-sphere in the following sense: Consider a link $L$ in $S^3$ of two components. The complement of a tubular neighborhood of $L$ is a manifold whose boundary consists in two copies of a torus. Our invariants apply to this case of bounded manifold and give new invariants of the given link of two components. Invariants of knots are also obtained.



rate research

Read More

81 - Tadayuki Watanabe 2016
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functions associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
266 - Tadayuki Watanabe 2012
We give a generalization of Fukayas Morse homotopy theoretic approach for 2-loop Chern--Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere satisfying certain condition described by a set of ordinary differential equations.
228 - Marc Lackenby 2016
We show that three natural decision problems about links and 3-manifolds are computationally hard, assuming some conjectures in complexity theory. The first problem is determining whether a link in the 3-sphere bounds a Seifert surface with Thurston norm at most a given integer; this is shown to be NP-complete. The second problem is the homeomorphism problem for closed 3-manifolds; this is shown to be at least as hard as the graph isomorphism problem. The third problem is determining whether a given link in the 3-sphere is a sublink of another given link; this is shown to be NP-hard.
In this note, we revisit the $Theta$-invariant as defined by R. Bott and the first author. The $Theta$-invariant is an invariant of rational homology 3-spheres with acyclic orthogonal local systems, which is a generalization of the 2-loop term of the Chern-Simons perturbation theory. The $Theta$-invariant can be defined when a cohomology group is vanishing. In this note, we give a slightly modified version of the $Theta$-invariant that we can define even if the cohomology group is not vanishing.
We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of racks. We prove that these structures give rise to Yang-Baxter operators in the tensor product of the base vector space and, upon defining suitable twisting isomorphisms, we obtain representations of the infinite (framed) braid group. We use these results to construct invariants of (framed) links. We consider examples for low-dimensional Lie algebras, where the ternary bracket is defined by composition of the binary ones, along with simple $3$-Lie algebras, and their applications to some classes of links.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا