Do you want to publish a course? Click here

VTLayout: Fusion of Visual and Text Features for Document Layout Analysis

176   0   0.0 ( 0 )
 Added by Shoubin Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Documents often contain complex physical structures, which make the Document Layout Analysis (DLA) task challenging. As a pre-processing step for content extraction, DLA has the potential to capture rich information in historical or scientific documents on a large scale. Although many deep-learning-based methods from computer vision have already achieved excellent performance in detecting emph{Figure} from documents, they are still unsatisfactory in recognizing the emph{List}, emph{Table}, emph{Text} and emph{Title} category blocks in DLA. This paper proposes a VTLayout model fusing the documents deep visual, shallow visual, and text features to localize and identify different category blocks. The model mainly includes two stages, and the three feature extractors are built in the second stage. In the first stage, the Cascade Mask R-CNN model is applied directly to localize all category blocks of the documents. In the second stage, the deep visual, shallow visual, and text features are extracted for fusion to identify the category blocks of documents. As a result, we strengthen the classification power of different category blocks based on the existing localization technique. The experimental results show that the identification capability of the VTLayout is superior to the most advanced method of DLA based on the PubLayNet dataset, and the F1 score is as high as 0.9599.



rate research

Read More

The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we extend the TK architecture to the full retrieval setting by incorporating the query term independence assumption. Furthermore, to reduce the memory complexity of the Transformer layers with respect to the input sequence length, we propose a new Conformer layer. We show that the Conformers GPU memory requirement scales linearly with input sequence length, making it a more viable option when ranking long documents. Finally, we demonstrate that incorporating explicit term matching signal into the model can be particularly useful in the full retrieval setting. We present preliminary results from our work in this paper.
Complex deep learning models now achieve state of the art performance for many document retrieval tasks. The best models process the query or claim jointly with the document. However for fast scalable search it is desirable to have document embeddings which are independent of the claim. In this paper we show that knowledge distillation can be used to encourage a model that generates claim independent document encodings to mimic the behavior of a more complex model which generates claim dependent encodings. We explore this approach in document retrieval for a fact extraction and verification task. We show that by using the soft labels from a complex cross attention teacher model, the performance of claim independent student LSTM or CNN models is improved across all the ranking metrics. The student models we use are 12x faster in runtime and 20x smaller in number of parameters than the teacher
157 - Yiheng Xu , Minghao Li , Lei Cui 2019
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread use of pre-training models for NLP applications, they almost exclusively focus on text-level manipulation, while neglecting layout and style information that is vital for document image understanding. In this paper, we propose the textbf{LayoutLM} to jointly model interactions between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage image features to incorporate words visual information into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at url{https://aka.ms/layoutlm}.
We present document domain randomization (DDR), the first successful transfer of convolutional neural networks (CNNs) trained only on graphically rendered pseudo-paper pages to real-world document segmentation. DDR renders pseudo-document pages by modeling randomized textual and non-textual contents of interest, with user-defined layout and font styles to support joint learning of fine-grained classes. We demonstrate competitive results using our DDR approach to extract nine document classes from the benchmark CS-150 and papers published in two domains, namely annual meetings of Association for Computational Linguistics (ACL) and IEEE Visualization (VIS). We compare DDR to conditions of style mismatch, fewer or more noisy samples that are more easily obtained in the real world. We show that high-fidelity semantic information is not necessary to label semantic classes but style mismatch between train and test can lower model accuracy. Using smaller training samples had a slightly detrimental effect. Finally, network models still achieved high test accuracy when correct labels are diluted towards confusing labels; this behavior hold across several classes.
Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that dont require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا