Do you want to publish a course? Click here

Substrate effect on thermal conductivity of monolayer WS2: Experimental measurement and theoretical analysis

130   0   0.0 ( 0 )
 Added by Yufeng Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monolayer WS2 has been a competitive candidate in electrical and optoelectronic devices due to its superior optoelectronic properties. To tackle the challenge of thermal management caused by the decreased size and concentrated heat in modern ICs, it is of great significance to accurately characterize the thermal conductivity of the monolayer WS2, especially with substrate supported. In this work, the dual-wavelength flash Raman method is used to experimentally measure the thermal conductivity of the suspended and the Si/SiO2 substrate supported monolayer WS2 at a temperature range of 200 K - 400 K. The room-temperature thermal conductivity of suspended and supported WS2 are 28.45 W/mK and 15.39 W/mK, respectively, with a ~50% reduction due to substrate effect. To systematically study the underlying mechanism behind the striking reduction, we employed the Raman spatial mapping analysis combined with the molecular dynamics simulation. The analysis of Raman spectra showed the increase of doping level, reduction of phonon lifetime and suppression of out-of-plane vibration mode due to substrate effect. In addition, the phonon transmission coefficient was mutually verified with Raman spectra analysis and further revealed that the substrate effect significantly enhances the phonon scattering at the interface and mainly suppresses the acoustic phonon, thus leading to the reduction of thermal conductivity. The thermal conductivity of other suspended and supported monolayer TMDCs (e.g. MoS2, MoSe2 and WSe2) were also listed for comparison. Our researches can be extended to understand the substrate effect of other 2D TMDCs and provide guidance for future TMDCs-based electrical and optoelectronic devices.



rate research

Read More

157 - Zhi-Xin Guo , J. W. Ding , 2012
We study the effect of SiC substrate on thermal conductivity of epitaxial graphene nanoribbons (GNRs) using the nonequilibrium molecular dynamics method. We show that the substrate has strong interaction with single-layer GNRs during the thermal transport, which largely reduces the thermal conductivity. The thermal conductivity characteristics of suspended GNRs are well preserved in the second GNR layers of bilayer GNR, which has a weak van der Waals interaction with the underlying structures. The out-of-plane phonon mode is found to play a critical role on the thermal conductivity variation of the second GNR layer induced by the underlying structures.
We report a new approach to the thermal conductivity manipulation -- substrate coupling. Generally, the phonon scattering with substrates can decrease the thermal conductivity, as observed in recent experiments. However, we find that at certain regions, the coupling to substrates can increase the thermal conductivity due to a reduction of anharmonic phonon scattering induced by shift of the phonon band to the low wave vector. In this way, the thermal conductivity can be efficiently manipulated via coupling to different substrates, without changing or destroying the material structures. This idea is demonstrated by calculating the thermal conductivity of modified double-walled carbon nanotubes and also by the ice nanotubes coupled within carbon nanotubes.
Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.
Coherent optical dressing of quantum materials offers technological advantages to control their electronic properties, such as the electronic valley degree of freedom in monolayer transition metal dichalcogenides (TMDs). Here, we observe a new type of optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We found that such helical optical driving not only induces an exciton energy downshift at the excitation valley, but also causes an anomalous energy upshift at the opposite valley, which is normally forbidden by the exciton selection rules but now made accessible through the intervalley biexcitons. These findings reveal the critical, but hitherto neglected, role of biexcitons to couple the two seemingly independent valleys, and to enhance the optical control in valleytronics.
Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMD) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 18 meV/T for monolayer WS2, using the proximity effect from a ferromagnetic EuS substrate, which is enhanced by nearly two orders of magnitude from the 0.2 meV/T obtained by an external magnetic field. More interestingly, a sign reversal of the valley exciton splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS, that is qualitatively different from the Zeeman effect. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for versatile control of valley pseudospin for quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا