Do you want to publish a course? Click here

Giant Valley Splitting in Monolayer WS2 by Magnetic Proximity Effect

75   0   0.0 ( 0 )
 Added by Hao Zeng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMD) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 18 meV/T for monolayer WS2, using the proximity effect from a ferromagnetic EuS substrate, which is enhanced by nearly two orders of magnitude from the 0.2 meV/T obtained by an external magnetic field. More interestingly, a sign reversal of the valley exciton splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS, that is qualitatively different from the Zeeman effect. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for versatile control of valley pseudospin for quantum information processing.



rate research

Read More

Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.
We have measured circularly polarized photoluminescence in monolayer MoSe2 under perpendicular magnetic fields up to 10 T. At low doping densities, the neutral and charged excitons shift linearly with field strength at a rate of $mp$ 0.12 meV/T for emission arising, respectively, from the K and K valleys. The opposite sign for emission from different valleys demonstrates lifting of the valley degeneracy. The magnitude of the Zeeman shift agrees with predicted magnetic moments for carriers in the conduction and valence bands. The relative intensity of neutral and charged exciton emission is modified by the magnetic field, reflecting the creation of field-induced valley polarization. At high doping levels, the Zeeman shift of the charged exciton increases to $mp$ 0.18 meV/T. This enhancement is attributed to many-body effects on the binding energy of the charged excitons.
Coherent light-matter interaction can be used to manipulate the energy levels of atoms, molecules and solids. When light with frequency {omega} is detuned away from a resonance {omega}o, repulsion between the photon-dressed (Floquet) states can lead to a shift of energy resonance. The dominant effect is the optical Stark shift (1/({omega}0-{omega})), but there is an additional contribution from the so-called Bloch-Siegert shift (1/({omega}o+{omega})). Although it is common in atoms and molecules, the observation of Bloch-Siegert shift in solids has so far been limited only to artificial atoms since the shifts were small (<1 {mu}eV) and inseparable from the optical Stark shift. Here we observe an exceptionally large Bloch-Siegert shift (~10 meV) in monolayer WS2 under infrared optical driving by virtue of the strong light-matter interaction in this system. Moreover, we can disentangle the Bloch-Siegert shift entirely from the optical Stark shift, because the two effects are found to obey opposite selection rules at different valleys. By controlling the light helicity, we can confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley. Such a valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties in two-dimensional materials, and offers a new avenue to explore quantum optics in solids.
Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition metal dichalcogenide (TMDC) with broken inversion symmetry possesses two degenerate yet inequivalent valleys, offering unique opportunities for valley control through helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest, (~ 0.2 meV/T). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magneto-reflectance measurements. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing MEF of a magnetic insulator can induce magnetic order, and valley and spin polarization in TMDCs, which may enable valleytronic and quantum computing applications.
Monolayer valley semiconductors, such as tungsten diselenide (WSe$_2$), possess valley pseudospin degrees of freedom that are optically addressable but degenerate in energy. Lifting the energy degeneracy by breaking time-reversal symmetry is vital for valley manipulation. This has been realized by directly applying magnetic fields or via pseudo-magnetic fields generated by intense circularly polarized optical pulses. However, sweeping large magnetic fields is impractical for devices, and the pseudo-magnetic fields are only effective in the presence of ultrafast laser pulses. The recent rise of two-dimensional (2D) magnets unlocks new approaches to control valley physics via van der Waals heterostructure engineering. Here we demonstrate wide continuous tuning of the valley polarization and valley Zeeman splitting with small changes in the laser excitation power in heterostructures formed by monolayer WSe$_2$ and 2D magnetic chromium triiodide (CrI$_3$). The valley manipulation is realized via optical control of the CrI$_3$magnetization, which tunes the magnetic exchange field over a range of 20 T. Our results reveal a convenient new path towards optical control of valley pseudospins and van der Waals magnetic heterostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا