Do you want to publish a course? Click here

Correlation of Gravitational Wave Background Noises and Statistical Loss for Angular Averaged Sensitivity Curves

64   0   0.0 ( 0 )
 Added by Naoki Seto
 Publication date 2021
  fields Physics
and research's language is English
 Authors Naoki Seto




Ask ChatGPT about the research

Gravitational wave backgrounds generate correlated noises to separated detectors. This correlation can induce statistical losses to actual detector networks, compared with idealized noise-independent networks. Assuming that the backgrounds are isotropic, we examine the statistical losses specifically for the angular averaged sensitivity curves, and derive simple expressions that depend on the overlap reduction functions and the strength of the background noises relative to the instrumental noises. For future triangular interferometers such as ET and LISA, we also discuss preferred network geometries to suppress the potential statistical losses.



rate research

Read More

(abridged) The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry: in effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the classic LISA configuration. We confirm that the (standard) inverse-rms average sensitivity for the isotropic population remains the same whether or not the LISA orbits are included in the computation. However, detector motion tightens the distribution of sensitivities, so for 50% of sources the sensitivity is within 30% of its average. For the Galactic-disk population, the average and the distribution of the sensitivity for a moving detector turn out to be similar to the isotropic case.
We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18} {rm Hz} lesssim f lesssim 100 {rm Hz}$) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between $10^{-15} {rm Hz} lesssim f lesssim 10^{-3} {rm Hz}$, given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.
Among all cosmological quantum-gravity or quantum-gravity-inspired scenarios, only very few predict a blue-tilted primordial tensor spectrum. We explore five of them and check whether they can generate a stochastic gravitational-wave background detectable by present and future interferometers: non-local quantum gravity, string-gas cosmology, new ekpyrotic scenario, Brandenberger-Ho non-commutative inflation and multi-fractional spacetimes. We show that non-local quantum gravity is unobservable, while all the other models can reach the strain sensitivity of DECIGO but not that of LIGO-Virgo-KAGRA, LISA or Einstein Telescope. Other quantum-gravity models with red-tilted spectra (most loop quantum cosmologies) or with exceptionally tiny quantum corrections (Wheeler-DeWitt quantum cosmology) are found to be non-detectable.
Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical models of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by He4 abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. We also give the best sensitivity achievable at 100 MHz with realistic experimental parameters.
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $Omega^T_0 < 5.6 times 10^{-8}$, $Omega^V_0 < 6.4times 10^{-8}$, and $Omega^S_0 < 1.1times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا