Do you want to publish a course? Click here

Stochastic gravitational-wave background in quantum gravity

237   0   0.0 ( 0 )
 Added by Gianluca Calcagni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Among all cosmological quantum-gravity or quantum-gravity-inspired scenarios, only very few predict a blue-tilted primordial tensor spectrum. We explore five of them and check whether they can generate a stochastic gravitational-wave background detectable by present and future interferometers: non-local quantum gravity, string-gas cosmology, new ekpyrotic scenario, Brandenberger-Ho non-commutative inflation and multi-fractional spacetimes. We show that non-local quantum gravity is unobservable, while all the other models can reach the strain sensitivity of DECIGO but not that of LIGO-Virgo-KAGRA, LISA or Einstein Telescope. Other quantum-gravity models with red-tilted spectra (most loop quantum cosmologies) or with exceptionally tiny quantum corrections (Wheeler-DeWitt quantum cosmology) are found to be non-detectable.

rate research

Read More

Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by many theories of quantum gravity (QG). We present the first study of the consequences of QG dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic scaling, largely independent of specific QG proposals. We constrain these effects using two examples of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated supermassive black-hole merger event detectable with LISA. We apply these constraints to various QG candidates, finding that the quantum geometries of group field theory, spin foams and loop quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our results complement and improve GW propagation-speed bounds on modified dispersion relations. Under more model-dependent assumptions, we also show that bounds on quantum geometry can be strengthened by solar-system tests.
The first-order phase transitions in the early universe are one of the well-known sources which release the stochastic background of gravitational waves (GWs). In this paper, we study the contribution of an external static and strong magnetic field on the stochastic background of gravitational waves (GWs) expected during QCD phase transition. In the light of the strongly magnetized hot QCD Equation of State which deviated from the ideal gas up to one-loop approximation, we estimate two phenomenologically important quantities: peak-frequency redshifted to today ($f_{rm peak}$) and GW strain amplitude ($h^2 Omega_{gw}$). The trace anomaly induced by the magnetized hot QCD matter around phase transition generates the stochastic background of GW with the peak-frequencies lower than the ideal gas-based signal (around nHz). Instead, the strain amplitudes corresponding to the peak frequencies are of the same order of magnitudes of the expected signal from ideal gas. This may be promising in the sense that although the strong magnetic field could mask the expected stochastic background of GWs but merely by upgrading the frequency sensitivity of detectors in the future, the magnetized GW is expected to be identified. Faced with the projected reach of detectors EPTA, IPTA, and SKA, we find that for the tail of the magnetized GW signals there remains a mild possibility of detection as it can reach the projected sensitivity of SKA.
Gravitational-wave astronomy has the potential to explore one of the deepest and most puzzling aspects of Einsteins theory: the existence of black holes. A plethora of ultracompact, horizonless objects have been proposed to arise in models inspired by quantum gravity. These objects may solve Hawkings information-loss paradox and the singularity problem associated with black holes, while mimicking almost all of their classical properties. They are, however, generically unstable on relatively short timescales. Here, we show that this ergoregion instability leads to a strong stochastic background of gravitational waves, at a level detectable by current and future gravitational-wave detectors. The absence of such background in the first observation run of Advanced LIGO already imposes the most stringent limits to date on black-hole alternatives, showing that certain models of quantum-dressed stellar black holes can be at most a small percentage of the total population. The future LISA mission will allow for similar constraints on supermassive black-hole mimickers.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
110 - Yungui Gong , Shaoqi Hou 2017
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar $+$ and $times$ polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا