No Arabic abstract
We consider uniformly random lozenge tilings of simply connected polygons subject to a technical assumption on their limit shape. We show that the edge statistics around any point on the arctic boundary, that is not a cusp or tangency location, converge to the Airy line ensemble. Our proof proceeds by locally comparing these edge statistics with those for a random tiling of a hexagon, which are well understood. To realize this comparison, we require a nearly optimal concentration estimate for the tiling height function, which we establish by exhibiting a certain Markov chain on the set of all tilings that preserves such concentration estimates under its dynamics.
In this paper we study uniformly random lozenge tilings of strip domains. Under the assumption that the limiting arctic boundary has at most one cusp, we prove a nearly optimal concentration estimate for the tiling height functions and arctic boundaries on such domains: with overwhelming probability the tiling height function is within $n^delta$ of its limit shape, and the tiling arctic boundary is within $n^{1/3+delta}$ to its limit shape, for arbitrarily small $delta>0$. This concentration result will be used in [AH21] to prove that the edge statistics of simply-connected polygonal domains, subject to a technical assumption on their limit shape, converge to the Airy line ensemble.
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, we show that these random height functions converge to a Gaussian Free Field as predicted by Kenyon and Okounkov [28]. A key ingredient of our proof is a dynamical version of the discrete loop equations as introduced by Borodin, Guionnet and Gorin [5], which might be of independent interest.
We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ballistic. The latter implication is proved to hold for arbitrary transitive graphs. Moreover, for every fixed $k$, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion $d-1-O(1/d)$ as $dto infty$; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length $n$ is comparable to the $n$th power of their connective constant. Some of these results were previously obtained by Madras and Wu cite{MaWuSAW} for all but finitely many regular tessellations of the hyperbolic plane.
Our work deals with symmetric rational functions and probabilistic models based on the fully inhomogeneous six vertex (ice type) model satisfying the free fermion condition. Two families of symmetric rational functions $F_lambda,G_lambda$ are defined as certain partition functions of the six vertex model, with variables corresponding to row rapidities, and the labeling signatures $lambda=(lambda_1ge ldotsge lambda_N)in mathbb{Z}^N$ encoding boundary conditions. These symmetric functions generalize Schur symmetric polynomials, as well as some of their variations, such as factorial and supersymmetric Schur polynomials. Cauchy type summation identities for $F_lambda,G_lambda$ and their skew counterparts follow from the Yang-Baxter equation. Using algebraic Bethe Ansatz, we obtain a double alternant type formula for $F_lambda$ and a Sergeev-Pragacz type formula for $G_lambda$. In the spirit of the theory of Schur processes, we define probability measures on sequences of signatures with probability weights proportional to products of our symmetric functions. We show that these measures can be viewed as determinantal point processes, and we express their correlation kernels in a double contour integral form. We present two proofs: The first is a direct computation of Eynard-Mehta type, and the second uses non-standard, inhomogeneo
We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additive rank one perturbations of the GOE/GUE/GSE random matrices. In the infinite-dimensional limit, we arrive at a one-parameter family of random Feynman-Kac type semigroups, which features the stochastic Airy semigroup of Gorin and Shkolnikov [13] as an extreme case. Our analysis also provides Feynman-Kac formulas for the spiked stochastic Airy operators, introduced by Bloemendal and Virag [6]. The Feynman-Kac formulas involve functionals of a reflected Brownian motion and its local times, thus, allowing to study the limiting operators by tools of stochastic analysis. We derive a first result in this direction by obtaining a new distributional identity for a reflected Brownian bridge conditioned on its local time at zero.