Do you want to publish a course? Click here

The Fragile Points Method, with an interface damage model, to simulate damage and fracture of U-notched structures

167   0   0.0 ( 0 )
 Added by Kailei Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Notched components are commonly used in engineering structures, where stress concentration may easily lead to crack initiation and development. The main goal of this work is to develop a simple numerical method to predict the structural strength and crack-growth-path of U-notched specimens made of brittle materials. For this purpose, the Fragile Points Method (FPM), as previously proposed by the authors, has been augmented by an interface damage model at the interfaces of the FPM domains, to simulate crack initiation and development. The formulations of FPM are based on a discontinuous Galerkin weak form where point-based piece-wise-continuous polynomial test and trial functions are used instead of element-based basis functions. In this work, the numerical fluxes introduced across interior interfaces between subdomains are postulated as the tractions acting on the interface derived from an interface damage model. The interface damage is triggered when the numerical flux reaches the interface strength, and the process of crack-surface separation is governed by the fracture energy. In this way, arbitrary crack initiation and propagation can be naturally simulated without the need for knowing the fracture-patch before-hand. Additionally, a small penalty parameter is sufficient to enforce the weak-form continuity condition before damage initiation, without causing problems such as artificial compliance and numerical ill-conditioning. As validations, the proposed FPM method with the interface damage model is used to predict the structural strength and crack-development from U-notched structures made of brittle materials, which is useful but challenging in engineering structural design practices.



rate research

Read More

Stiffness degradation and progressive failure of composite laminates are complex processes involving evolution and multi-mode interactions among fiber fractures, intra-ply matrix cracks and inter-ply delaminations. This paper presents a novel finite element model capable of explicitly treating such discrete failures in laminates of random layup. Matching of nodes is guaranteed at potential crack bifurcations to ensure correct displacement jumps near crack tips and explicit load transfer among cracks. The model is entirely geometry-based (no mesh prerequisite) with distinct segments assembled together using surface-based tie constraints, and thus requires no element partitioning or enrichment. Several numerical examples are included to demonstrate the models ability to generate results that are in qualitative and quantitative agreement with experimental observations on both damage evolution and tensile strength of specimens. The present model is believed unique in realizing simultaneous and accurate coupling of all three types of failures in laminates having arbitrary ply angles and layup.
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation is characterised by a mechanism-based strain gradient constitutive model. This non-local plastic-damage formulation is numerically implemented and used to simulate fracture in several paradigmatic boundary value problems. The case studies aim at shedding light into the role of the plastic and fracture length scales. It is found that the role of plastic strain gradients is two-fold. When dealing with sharp defects like cracks, plastic strain gradients elevate local stresses and facilitate fracture. However, in the presence of non-sharp defects failure is driven by the localisation of plastic flow, which is delayed due to the additional work hardening introduced by plastic strain gradients.
Ductile fracture of metallic materials typically involves the elastoplastic deformation and associated damaging process. A nonlocal lattice particle method (LPM) is proposed to model this complex behavior. Recently, a distortional energy-based model is formulated into LPM to simulate the mixed linear hardening J2 plasticity. However, this model is based on the incremental updating algorithm which needs very small loading steps to get reasonable results. This is time-consuming and unstable for large systems. Therefore, in this paper, a stress-based return-mapping algorithm for simulating J2 plasticity is proposed to deal with these deficiencies. The material deterioration process is reformulated as a nonlocal damage evolution process. By incorporating the iterative solution procedure with dense-packing lattices, the damage-enhanced LPM framework is able to effectively reduce the lattice-dependency of crack grow analysis. The particle-size dependency of macroscopic mechanical responses is also handled properly by using the proposed nonlocal damage model. Several numerical examples are provided to show the ability of the new LPM framework to predict the elastoplastic behavior of engineering structures with/without damage and fracture.
Several aspects influence corrosive processes in RC structures, such as environmental conditions, structural geometry, and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. On the other hand, the definition of limit states, applied in the reliability assessment, requires a proper mechanical model. In this context, this study proposes an accurate methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements corrosion. To this purpose, an improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding, and rebar corrosion caused either by chlorides or carbonation process. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the LDMC. The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam, and a 2D RC frame. Curves illustrate the probability of failure over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identify the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.
It is well known that domain-decomposition-based multiscale mixed methods rely on interface spaces, defined on the skeleton of the decomposition, to connect the solution among the non-overlapping subdomains. Usual spaces, such as polynomial-based ones, cannot properly represent high-contrast channelized features such as fractures (high permeability) and barriers (low permeability) for flows in heterogeneous porous media. We propose here new interface spaces, which are based on physics, to deal with permeability fields in the simultaneous presence of fractures and barriers, accommodated respectively, by the pressure and flux spaces. Existing multiscale methods based on mixed formulations can take advantage of the proposed interface spaces, however, in order to present and test our results, we use the newly developed Multiscale Robin Coupled Method (MRCM) [Guiraldello, et al., J. Comput. Phys., 355 (2018) pp. 1-21], which generalizes most well-known multiscale mixed methods, and allows for the independent choice of the pressure and flux interface spaces. An adaptive version of the MRCM [Rocha, et al., J. Comput. Phys., 409 (2020), 109316] is considered that automatically selects the physics-based pressure space for fractured structures and the physics-based flux space for regions with barriers, resulting in a procedure with unprecedented accuracy. The features of the proposed approach are investigated through several numerical simulations of single-phase and two-phase flows, in different heterogeneous porous media. The adaptive MRCM combined with the interface spaces based on physics provides promising results for challenging problems with the simultaneous presence of fractures and barriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا