Do you want to publish a course? Click here

Deep Dive into Semi-Supervised ELBO for Improving Classification Performance

130   0   0.0 ( 0 )
 Added by Fahim Faisal Niloy
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Decomposition of the evidence lower bound (ELBO) objective of VAE used for density estimation revealed the deficiency of VAE for representation learning and suggested ways to improve the model. In this paper, we investigate whether we can get similar insights by decomposing the ELBO for semi-supervised classification using VAE model. Specifically, we show that mutual information between input and class labels decreases during maximization of ELBO objective. We propose a method to address this issue. We also enforce cluster assumption to aid in classification. Experiments on a diverse datasets verify that our method can be used to improve the classification performance of existing VAE based semi-supervised models. Experiments also show that, this can be achieved without sacrificing the generative power of the model.



rate research

Read More

Semi-supervised variational autoencoders (VAEs) have obtained strong results, but have also encountered the challenge that good ELBO values do not always imply accurate inference results. In this paper, we investigate and propose two causes of this problem: (1) The ELBO objective cannot utilize the label information directly. (2) A bottleneck value exists and continuing to optimize ELBO after this value will not improve inference accuracy. On the basis of the experiment results, we propose SHOT-VAE to address these problems without introducing additional prior knowledge. The SHOT-VAE offers two contributions: (1) A new ELBO approximation named smooth-ELBO that integrates the label predictive loss into ELBO. (2) An approximation based on optimal interpolation that breaks the ELBO value bottleneck by reducing the margin between ELBO and the data likelihood. The SHOT-VAE achieves good performance with a 25.30% error rate on CIFAR-100 with 10k labels and reduces the error rate to 6.11% on CIFAR-10 with 4k labels.
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supervised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.
Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data. There are several graph convolutional models that attempt to develop deep networks but do not cause serious over-smoothing at the same time. Considering that the wavelet transform generally has a stronger ability to extract useful information than the Fourier transform, we propose a new deep graph wavelet convolutional network (DeepGWC) for semi-supervised node classification tasks. Based on the optimized static filtering matrix parameters of vanilla graph wavelet neural networks and the combination of Fourier bases and wavelet ones, DeepGWC is constructed together with the reuse of residual connection and identity mappings in network architectures. Extensive experiments on three benchmark datasets including Cora, Citeseer, and Pubmed are conducted. The experimental results demonstrate that our DeepGWC outperforms existing graph deep models with the help of additional wavelet bases and achieves new state-of-the-art performances eventually.
We consider the task of learning a classifier from the feature space $mathcal{X}$ to the set of classes $mathcal{Y} = {0, 1}$, when the features can be partitioned into class-conditionally independent feature sets $mathcal{X}_1$ and $mathcal{X}_2$. We show the surprising fact that the class-conditional independence can be used to represent the original learning task in terms of 1) learning a classifier from $mathcal{X}_2$ to $mathcal{X}_1$ and 2) learning the class-conditional distribution of the feature set $mathcal{X}_1$. This fact can be exploited for semi-supervised learning because the former task can be accomplished purely from unlabeled samples. We present experimental evaluation of the idea in two real world applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا