No Arabic abstract
The problem of air pollution threatens public health. Air quality forecasting can provide the air quality index hours or even days later, which can help the public to prevent air pollution in advance. Previous works focus on citywide air quality forecasting and cannot solve nationwide city forecasting problem, whose difficulties lie in capturing the latent dependencies between geographically distant but highly correlated cities. In this paper, we propose the group-aware graph neural network (GAGNN), a hierarchical model for nationwide city air quality forecasting. The model constructs a city graph and a city group graph to model the spatial and latent dependencies between cities, respectively. GAGNN introduces differentiable grouping network to discover the latent dependencies among cities and generate city groups. Based on the generated city groups, a group correlation encoding module is introduced to learn the correlations between them, which can effectively capture the dependencies between city groups. After the graph construction, GAGNN implements message passing mechanism to model the dependencies between cities and city groups. The evaluation experiments on Chinese city air quality dataset indicate that our GAGNN outperforms existing forecasting models.
Accurately forecasting air quality is critical to protecting general public from lung and heart diseases. This is a challenging task due to the complicated interactions among distinct pollution sources and various other influencing factors. Existing air quality forecasting methods cannot effectively model the diffusion processes of air pollutants between cities and monitoring stations, which may suddenly deteriorate the air quality of a region. In this paper, we propose HighAir, i.e., a hierarchical graph neural network-based air quality forecasting method, which adopts an encoder-decoder architecture and considers complex air quality influencing factors, e.g., weather and land usage. Specifically, we construct a city-level graph and station-level graphs from a hierarchical perspective, which can consider city-level and station-level patterns, respectively. We design two strategies, i.e., upper delivery and lower updating, to implement the inter-level interactions, and introduce message passing mechanism to implement the intra-level interactions. We dynamically adjust edge weights based on wind direction to model the correlations between dynamic factors and air quality. We compare HighAir with the state-of-the-art air quality forecasting methods on the dataset of Yangtze River Delta city group, which covers 10 major cities within 61,500 km2. The experimental results show that HighAir significantly outperforms other methods.
The Hawkes process has become a standard method for modeling self-exciting event sequences with different event types. A recent work has generalized the Hawkes process to a neurally self-modulating multivariate point process, which enables the capturing of more complex and realistic impacts of past events on future events. However, this approach is limited by the number of possible event types, making it impossible to model the dynamics of evolving graph sequences, where each possible link between two nodes can be considered as an event type. The number of event types increases even further when links are directional and labeled. To address this issue, we propose the Graph Hawkes Neural Network that can capture the dynamics of evolving graph sequences and can predict the occurrence of a fact in a future time instance. Extensive experiments on large-scale temporal multi-relational databases, such as temporal knowledge graphs, demonstrate the effectiveness of our approach.
Multivariate time-series forecasting plays a crucial role in many real-world applications. It is a challenging problem as one needs to consider both intra-series temporal correlations and inter-series correlations simultaneously. Recently, there have been multiple works trying to capture both correlations, but most, if not all of them only capture temporal correlations in the time domain and resort to pre-defined priors as inter-series relationships. In this paper, we propose Spectral Temporal Graph Neural Network (StemGNN) to further improve the accuracy of multivariate time-series forecasting. StemGNN captures inter-series correlations and temporal dependencies textit{jointly} in the textit{spectral domain}. It combines Graph Fourier Transform (GFT) which models inter-series correlations and Discrete Fourier Transform (DFT) which models temporal dependencies in an end-to-end framework. After passing through GFT and DFT, the spectral representations hold clear patterns and can be predicted effectively by convolution and sequential learning modules. Moreover, StemGNN learns inter-series correlations automatically from the data without using pre-defined priors. We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN. Code is available at https://github.com/microsoft/StemGNN/
In graph neural networks (GNNs), message passing iteratively aggregates nodes information from their direct neighbors while neglecting the sequential nature of multi-hop node connections. Such sequential node connections e.g., metapaths, capture critical insights for downstream tasks. Concretely, in recommender systems (RSs), disregarding these insights leads to inadequate distillation of collaborative signals. In this paper, we employ collaborative subgraphs (CSGs) and metapaths to form metapath-aware subgraphs, which explicitly capture sequential semantics in graph structures. We propose metatextbf{P}ath and textbf{E}ntity-textbf{A}ware textbf{G}raph textbf{N}eural textbf{N}etwork (PEAGNN), which trains multilayer GNNs to perform metapath-aware information aggregation on such subgraphs. This aggregated information from different metapaths is then fused using attention mechanism. Finally, PEAGNN gives us the representations for node and subgraph, which can be used to train MLP for predicting score for target user-item pairs. To leverage the local structure of CSGs, we present entity-awareness that acts as a contrastive regularizer on node embedding. Moreover, PEAGNN can be combined with prominent layers such as GAT, GCN and GraphSage. Our empirical evaluation shows that our proposed technique outperforms competitive baselines on several datasets for recommendation tasks. Further analysis demonstrates that PEAGNN also learns meaningful metapath combinations from a given set of metapaths.
Urban air pollution is a major environmental problem affecting human health and quality of life. Monitoring stations have been established to continuously obtain air quality information, but they do not cover all areas. Thus, there are numerous methods for spatially fine-grained air quality inference. Since existing methods aim to infer air quality of locations only in monitored cities, they do not assume inferring air quality in unmonitored cities. In this paper, we first study the air quality inference in unmonitored cities. To accurately infer air quality in unmonitored cities, we propose a neural network-based approach AIREX. The novelty of AIREX is employing a mixture-of-experts approach, which is a machine learning technique based on the divide-and-conquer principle, to learn correlations of air quality between multiple cities. To further boost the performance, it employs attention mechanisms to compute impacts of air quality inference from the monitored cities to the locations in the unmonitored city. We show, through experiments on a real-world air quality dataset, that AIREX achieves higher accuracy than state-of-the-art methods.