Do you want to publish a course? Click here

A Matching Algorithm based on Image Attribute Transfer and Local Features for Underwater Acoustic and Optical Images

61   0   0.0 ( 0 )
 Added by Xiaoteng Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the field of underwater vision research, image matching between the sonar sensors and optical cameras has always been a challenging problem. Due to the difference in the imaging mechanism between them, which are the gray value, texture, contrast, etc. of the acoustic images and the optical images are also variant in local locations, which makes the traditional matching method based on the optical image invalid. Coupled with the difficulties and high costs of underwater data acquisition, it further affects the research process of acousto-optic data fusion technology. In order to maximize the use of underwater sensor data and promote the development of multi-sensor information fusion (MSIF), this study applies the image attribute transfer method based on deep learning approach to solve the problem of acousto-optic image matching, the core of which is to eliminate the imaging differences between them as much as possible. At the same time, the advanced local feature descriptor is introduced to solve the challenging acousto-optic matching problem. Experimental results show that our proposed method could preprocess acousto-optic images effectively and obtain accurate matching results. Additionally, the method is based on the combination of image depth semantic layer, and it could indirectly display the local feature matching relationship between original image pair, which provides a new solution to the underwater multi-sensor image matching problem.



rate research

Read More

This paper proposes a method that combines the style transfer technique and the learned descriptor to enhance the matching performances of underwater sonar images. In the field of underwater vision, sonar is currently the most effective long-distance detection sensor, it has excellent performances in map building and target search tasks. However, the traditional image matching algorithms are all developed based on optical images. In order to solve this contradiction, the style transfer method is used to convert the sonar images into optical styles, and at the same time, the learned descriptor with excellent expressiveness for sonar images matching is introduced. Experiments show that this method significantly enhances the matching quality of sonar images. In addition, it also provides new ideas for the preprocessing of underwater sonar images by using the style transfer approach.
Binocular stereo vision is an important branch of machine vision, which imitates the human eye and matches the left and right images captured by the camera based on epipolar constraints. The matched disparity map can be calculated according to the camera imaging model to obtain a depth map, and then the depth map is converted to a point cloud image to obtain spatial point coordinates, thereby achieving the purpose of ranging. However, due to the influence of illumination under water, the captured images no longer meet the epipolar constraints, and the changes in imaging models make traditional calibration methods no longer applicable. Therefore, this paper proposes a new underwater real-time calibration method and a matching method based on the best search domain to improve the accuracy of underwater distance measurement using binoculars.
Facing the complex marine environment, it is extremely challenging to conduct underwater acoustic target recognition (UATR) using ship-radiated noise. Inspired by neural mechanism of auditory perception, this paper provides a new deep neural network trained by original underwater acoustic signals with depthwise separable convolution (DWS) and time-dilated convolution neural network, named auditory perception inspired time-dilated convolution neural network (ATCNN), and then implements detection and classification for underwater acoustic signals. The proposed ATCNN model consists of learnable features extractor and integration layer inspired by auditory perception, and time-dilated convolution inspired by language model. This paper decomposes original time-domain ship-radiated noise signals into different frequency components with depthwise separable convolution filter, and then extracts signal features based on auditory perception. The deep features are integrated on integration layer. The time-dilated convolution is used for long-term contextual modeling. As a result, like language model, intra-class and inter-class information can be fully used for UATR. For UATR task, the classification accuracy reaches 90.9%, which is the highest in contrast experiment. Experimental results show that ATCNN has great potential to improve the performance of UATR classification.
Deep Learning methods usually require huge amounts of training data to perform at their full potential, and often require expensive manual labeling. Using synthetic images is therefore very attractive to train object detectors, as the labeling comes for free, and several approaches have been proposed to combine synthetic and real images for training. In this paper, we show that a simple trick is sufficient to train very effectively modern object detectors with synthetic images only: We freeze the layers responsible for feature extraction to generic layers pre-trained on real images, and train only the remaining layers with plain OpenGL rendering. Our experiments with very recent deep architectures for object recognition (Faster-RCNN, R-FCN, Mask-RCNN) and image feature extractors (InceptionResnet and Resnet) show this simple approach performs surprisingly well.
Underwater image enhancement is such an important vision task due to its significance in marine engineering and aquatic robot. It is usually work as a pre-processing step to improve the performance of high level vision tasks such as underwater object detection. Even though many previous works show the underwater image enhancement algorithms can boost the detection accuracy of the detectors, no work specially focus on investigating the relationship between these two tasks. This is mainly because existing underwater datasets lack either bounding box annotations or high quality reference images, based on which detection accuracy or image quality assessment metrics are calculated. To investigate how the underwater image enhancement methods influence the following underwater object detection tasks, in this paper, we provide a large-scale underwater object detection dataset with both bounding box annotations and high quality reference images, namely OUC dataset. The OUC dataset provides a platform for researchers to comprehensive study the influence of underwater image enhancement algorithms on the underwater object detection task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا