No Arabic abstract
Blazars constitute the vast majority of extragalactic $gamma$-ray sources. They can also contribute a sizable fraction of the diffuse astrophysical neutrinos detected by IceCube. In the past few years, the real-time alert system of IceCube has led to multiwavelength follow-up of very high-energy neutrino events of plausible astrophysical origin. Spatial and temporal coincidences of these neutrino events with the high-activity state of $gamma$-ray blazars can provide a unique opportunity to decipher cosmic-ray interactions in the relativistic jets. Assuming that blazars accelerate cosmic rays up to ultrahigh energies ($E>10^{17}$ eV), we calculate the guaranteed contribution to the line-of-sight cosmogenic $gamma$-ray and neutrino fluxes from four blazars associated with IceCube neutrino events. Detection of these fluxes by upcoming $gamma$-ray imaging telescopes like CTA and/or by planned neutrino detectors like IceCube-Gen2 may lead to the first direct signature(s) of ultrahigh-energy cosmic-ray (UHECR) sources. We find that detection of the cosmogenic neutrino fluxes from the blazars TXS~0506+056, PKS~1502+106 and GB6~J1040+0617 would require UHECR luminosity $gtrsim 10$ times the inferred neutrino luminosity from the associated IceCube events. Blazars TXS~0506+056, 3HSP~J095507.9+355101 and GB6~J1040+0617 can be detected by CTA if the UHECR luminosity is $gtrsim 10$ times the neutrino luminosity inferred from the associated IceCube events. Given their relatively low redshifts and hence total energetics, TXS~0506+056 and 3HSP~J095507.9+355101 should be the prime targets for upcoming large neutrino and $gamma$-ray telescopes.
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energies E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.
We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $sim1%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.
The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, $mathrm{E} > 100,mathrm{GeV}$) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system.
The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.
The first ever identification of a cosmic ray accelerator as the consequence of spacial and temporal correlation of IceCube event 170922A with flaring of a blazar TXS 0506+056 motivated us to look for other flaring blazars in Fermi-LAT 3FGL catalog, which could be correlated with IceCube high energy track events. We have studied the Fermi-LAT light curves of blazars correlated with neutrino track events. Among the eight sources identified within 2$sigma$ angular uncertainty of the IceCube track events selected in our study, we find only one source 3FGL J2255+2409 was in flaring state during the neutrino detection. We have carried out a time dependent modelling of the multi-wavelength data from this blazar, and the neutrino event including leptonic energy losses and proton-proton interactions in its jet to determine whether it could be the origin of the neutrino event. Our lepto-hadronic model estimates a jet luminosity of $L_j = 3.6 times10^{47}$ erg/sec during the neutrino phase of 3FGL/4FGL J2255+2409.