Do you want to publish a course? Click here

Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

75   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, $mathrm{E} > 100,mathrm{GeV}$) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system.



rate research

Read More

136 - M. Santander , D. Dorner , J. Dumm 2017
The detection of an astrophysical flux of high-energy neutrinos by IceCube is a major step forward in the search for the origin of cosmic rays, as this emission is expected to originate in hadronic interactions taking place in or near cosmic-ray accelerators. No neutrino point sources, or a significant correlation with known astrophysical objects, have been identified in the IceCube data so far that could reveal the location of the neutrino emission sites. The hadronic interactions responsible for the neutrino emission should also lead to the production of high-energy gamma rays from neutral pion decays. The search for neutrino sources can therefore be performed by studying the spatial and temporal correlations between neutrino events and very-high-energy (VHE, E > 100 GeV) gamma rays. We report on the search for VHE gamma-ray emission at the reconstructed position of muon neutrino events detected by IceCube using the FACT, H.E.S.S., MAGIC, and VERITAS imaging atmospheric Cherenkov telescopes (IACTs). No significant steady gamma-ray counterparts have been identified for the neutrino events observed so far. Finally, we outline recent programs to perform prompt IACT observations of realtime IceCube neutrino event positions.
130 - D. Lennarz 2013
Supernova (SN) remnants are a well motivated candidate for the acceleration sites of cosmic rays with energies up to the knee (10^15 eV). It has been suggested that also young SNe (~<1 year after the explosion) may be able to accelerate cosmic rays to even higher energies. A smoking gun for cosmic-ray acceleration in young SNe would be the production of very-high-energy (VHE, >10 GeV) gamma-ray radiation. The H.E.S.S. imaging air Cherenkov telescope array is an instrument sensitive to such radiation. In this contribution, the pointing directions of the H.E.S.S. telescopes are compared to a recently published, extragalactic SN catalogue to identify coincidental observations. The results of the data analysis are discussed.
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of $<1$ coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of $<4$ coincidences per year.
We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.
X-ray binaries are long-standing source candidates of Galactic cosmic rays and neutrinos. The compact object in a binary system can be the site for cosmic-ray acceleration, while high-energy neutrinos can be produced by the interactions of cosmic rays in the jet of the compact object, the stellar wind, or the atmosphere of the companion star. We report a time-dependent study of high-energy neutrinos from X-ray binaries with IceCube using 7.5 years of muon neutrino data and X-ray observations. In the absence of significant correlation, we report upper limits on the neutrino fluxes from these sources and provide a comparison with theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا