No Arabic abstract
We study leptonic CP violation from a new perspective. For Majorana neutrinos, a new parametrization for leptonic mixing of the form $V=O_{23} O_{12} K_{a}^{i}cdot O$ reveals interesting aspects that are less clear in the standard parametrization. We identify several important scenario-cases with mixing angles in agreement with experiment and leading to large leptonic CP violation. If neutrinos happen to be quasi-degenerate, this new parametrization might be very useful, e.g., in reducing the number of relevant parameters of models.
A low-energy non-unitary leptonic mixing matrix is a generic effect of a large class of theories accounting for neutrino masses. It is shown how the extra CP-odd phases of a general non-unitary matrix allow for sizeable CP-asymmetries in channels other than those dominant in the standard unitary case. The $ u_muto u_tau$ channel turns out to be an excellent tool to further constrain moduli and phases. Furthermore, we clarify the relationship between our approach and the so-called non-standard neutrino interactions schemes: the sensitivities explored here apply as well to such constructions.
The existence of CP-violation in the leptonic sector is one of the most important issues for modern science. Neutrino physics is a key to the solution of this problem. JUNO (under construction) is the near future of neutrino physics. However CP-violation is not a priority for the current scientific program. We estimate the capability of $delta_{rm CP}$ measurement, assuming a combination of the JUNO detector and a superconductive cyclotron as the antineutrino source. This method of measuring CP-violation is an alternative to conventional beam experiments. A significance level of 3$sigma$ can be reached for 22% of the $delta_{rm CP}$ range. The accuracy of measurement lies between 8$^{rm o}$ and 22$^{rm o}$. It is shown that the dominant influence on the result is the uncertainty in the mixing angle $Theta_{23}$.
Measurements of CP--violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP--violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutrino interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on source--detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics.
We study the CP violation in two-body nonleptonic decays of $B_c$ meson. We concentrate on the decay channels which contain at least one excited heavy meson in the final states. Specifically, the following channels are considered: $B_cto cbar c(2S, 2P)+bar cq(1S, 1P)$, $B_cto cbar c(1S)+bar cq(2S, 2P)$, $B_cto cbar c(1P)+bar cq(2S)$, $B_cto cbar c(1D)+bar cq(1S, 1P)$, and $B_cto cbar c(3S)+bar cq(1S)$. The improved Bethe-Salpeter method is applied to calculate the hadronic transition matrix element. Our results show that some decay modes have large branching ratios, which is of the order of $10^{-3}$. The CP violation effect in $B_c rightarrow eta_c(1S)+D(2S)$, $B_c rightarrow eta_c(1S)+D_0^{*}(2P)$, and $B_c rightarrow J/psi+D^{*}(2S)$ are most likely to be found. If the detection precision of the CP asymmetry in such channels can reach the $3sigma$ level, at least $10^7$ $B_c$ events are needed.
We analyze the CP violation in the semileptonic | Delta S|=1 tau-decays in supersymmetric extensions of the standard model (SM) with R parity violating term. We show that the CP asymmetry of tau-decay is enhanced significantly and the current experimental limits obtained by CLEO collaborations can be easily accommodated. We argue that observing CP violation in semi leptonic tau-decay would be a clear evidence for R-parity violating SUSY extension of the SM.