Do you want to publish a course? Click here

Exceptional sequences of 8 line bundles on (P^1)^3

585   0   0.0 ( 0 )
 Added by Klaus Altmann
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We investigate maximal exceptional sequences of line bundles on (P^1)^3, i.e. those consisting of 2^r elements. For r=3 we show that they are always full, meaning that they generate the derived category. Everything is done in the discrete setup: Exceptional sequences of line bundles appear as special finite subsets s of the Picard group Z^r of (P^1)^r, and the question of generation is understood like a process of contamination of the whole Z^r out of an infectious seed s.

rate research

Read More

We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, investigating the diagonal property, or the toric Frobenius morphism. In the present paper we focus on line bundles on toric varieties. First, we present a possibility of understanding their cohomology in terms of their (generalized) momentum polytopes. Then we present a method to exhibit the entire locus of immaculate divisors within the class group. This will be applied to the cases of smooth toric varieties of Picard rank two and three and to those being given by splitting fans. The locus of immaculate line bundles contains several linear strata of varying dimensions. We introduce a notion of relative immaculacy with respect to certain contraction morphisms. This notion will be stronger than plain immaculacy and provides an explanation of some of these linear strata.
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0$ and $Sigma_1$ of irreducible components of the spaces $mathcal{B}(e,n)$, for $e=0$ and $e=-1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads, the middle term of which is a rank 4 symplectic instanton bundle in case $e=0$, respectively, twisted symplectic bundle in case $e=-1$. We show that the series $Sigma_0$ contains components for all big enough values of $n$ (more precisely, at least for $nge146$). $Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $mathcal{B}(0,n)$ satisfying this property.
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give rise to a new definition of limit linear series. This article and its first and third part companion parts are the first in a series aimed to explore this new approach. In the first part, we set up the combinatorial framework and showed how graphs weighted with integer lengths associated to the edges provide tilings of Euclidean spaces by polytopes associated to the graph itself and to its subgraphs. In this part, we describe the arrangements of toric varieties associated to these tilings. Roughly speaking, the normal fan to each polytope in the tiling corresponds to a toric variety, and these toric varieties are glued together in an arrangement according to how the polytopes meet. We provide a thorough description of these toric arrangements from different perspectives: by using normal fans, as unions of torus orbits, by describing the (infinitely many) polynomial equations defining them in products of doubly infinite chains of projective lines, and as degenerations of algebraic tori. These results will be of use in the third part to achieve our goal of describing all stable limits of a family of line bundles along a degenerating family of curves.
80 - Rong Du , Xinyi Fang 2018
We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Andos results to higher dimension. Moreover, we also generalize Laufers results of rationality and embedding dimension to higher dimension.
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of the second Chern class $n$ on the projective 3-space. The generalized null correlation bundles constituting open dense subsets of these components are defined as cohomology bundles of monads whose members are direct sums of line bundles of degrees depending on nonnegative integers $a,b,c$, where $bge a$ and $c>a+b$. We show that, in the wide range when $c>2a+b-e, b>a, (e,a) e(0,0)$, the Ein components are rational, and in the remaining cases they are at least stably rational. As a consequence, the union of the spaces $M(e,n)$ over all $nge1$ contains an infinite series of rational components for both $e=0$ and $e=-1$. Explicit constructions of rationality of Ein components under the above conditions on $e,a,b,c$ and, respectively, of their stable rationality in the remaining cases, are given. In the case of rationality, we construct universal families of generalized null correlation bundles over certain open subsets of Ein components showing that these subsets are fine moduli spaces. As a by-product of our construction, for $c_1=0$ and $n$ even, they provide, perhaps the first known, examples of fine moduli spaces not satisfying the condition $n$ is odd, which is a usual sufficient condition for fineness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا