Do you want to publish a course? Click here

High Conversion Efficiency in Multi-mode Gas-filled Hollow-core Fiber

81   0   0.0 ( 0 )
 Added by Md. Selim Habib
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous dispersion regime at 1030 nm with pulses of 30 fs duration and 7 $mu$J energy. Our calculations indicate high conversion efficiency of $>$35% (2.5 $mu$J) after propagating 3.6 cm fiber length which is due to the strong shock effect and plasma induced blue-shifted soliton. It is observed that the efficiency of fundamental LP$_{01}$-mode is about 15% which is much smaller than LP$_{02}$-like mode and also emitted at longer wavelength of 270 nm.



rate research

Read More

We demonstrate that the phase-matched dispersive wave (DW) emission within the resonance band of a 25-cm-long gas-filled hollow-core photonic crystal fiber (HC-PCF) can be strongly enhanced by the photoionization effect of the pump pulse. In the experiments we observe that as the pulse energy increases, the pump pulse gradually shifts to shorter wavelengths due to soliton-plasma interactions. When the central wavelength of the blueshifting soliton is close to the resonance band of the HC-PCF, high-efficiency energy transfer from the pump light to the DW in the visible region can be obtained. During this DW emission process, we also observe that the spectral center of the DW gradually shifts to longer wavelengths leading to a slightly-increased DW bandwidth, which can be well explained as the consequence of phase-matched coupling between the pump pulse and the DW. In particular, at an input pulse energy of 6 uJ, the spectral ratio of the DW at the fiber output is measured to be as high as ~53% together with a conversion efficiency of ~19%. These experimental results, explained by numerical simulations, pave the way to high-brightness light sources based on high-efficiency frequency-upconversion processes in gas-filled HC-PCFs.
318 - S. Davtyan , D. Novoa , Y. Chen 2019
Broadband-tunable sources of circularly-polarized light are crucial in fields such as laser science, biomedicine and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components, and are limited by the availability of suitably transparent crystals and glasses. Although gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path-lengths, and high Raman conversion efficiency, it is unable to preserve circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on helically-twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining circular polarization state against external perturbations. This makes it possible to generate pure circularly-polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with fully-controllable polarization state.
We report on a highly-efficient experimental scheme for the generation of deep-ultraviolet ultrashort light pulses using four-wave mixing in gas-filled kagome-style photonic crystal fiber. By pumping with ultrashort, few $mu$J, pulses centered at 400 nm, we generate an idler pulse at 266 nm, and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%. Although the pump and seed pulse durations are ~100 fs, the generated ultraviolet spectral bandwidths support sub-15 fs pulses. These can be further extended to support few-cycle pulses. Four-wave mixing in gas-filled hollow-core fibres can be scaled to high average powers and different spectral regions such as the vacuum ultraviolet (100-200 nm).
We present a technique that uses noisy broadband pulse bursts generated by modulational instability to probe nonlinear processes, including infrared-inactive Raman transitions, in molecular gases. These processes imprint correlations between different regions of the noisy spectrum, which can be detected by acquiring single shot spectra and calculating the Pearson correlation coefficient between the different frequency components. Numerical simulations verify the experimental measurements and are used to further understand the system and discuss methods to improve the signal strength and the spectral resolution of the technique.
We demonstrate a route to supercontinuum generation in gas-filled hollow-core anti-resonant fibers through the creation of a broad vibrational Raman frequency comb followed by continuous broadening and merging of the comb lines through either rotational Raman scattering or the optical Kerr effect. Our demonstration experiments, utilizing a single pump pulse with 20 ps duration at 532 nm in a nitrogen-filled fiber, produce a supercontinuum spanning from 440 nm to 1200 nm, with an additional deep ultraviolet continuum from 250 nm to 360 nm. Numerical results suggest that this approach can produce even broader supercontinuum spectra extending from the ultraviolet to mid-infrared.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا