Do you want to publish a course? Click here

From Raman frequency combs to supercontinuum generation in nitrogen-filled hollow-core anti-resonant fiber

217   0   0.0 ( 0 )
 Added by John Travers
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a route to supercontinuum generation in gas-filled hollow-core anti-resonant fibers through the creation of a broad vibrational Raman frequency comb followed by continuous broadening and merging of the comb lines through either rotational Raman scattering or the optical Kerr effect. Our demonstration experiments, utilizing a single pump pulse with 20 ps duration at 532 nm in a nitrogen-filled fiber, produce a supercontinuum spanning from 440 nm to 1200 nm, with an additional deep ultraviolet continuum from 250 nm to 360 nm. Numerical results suggest that this approach can produce even broader supercontinuum spectra extending from the ultraviolet to mid-infrared.

rate research

Read More

In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report the generation of multiple dispersive waves (DWs) in the range 90-120 nm, well into the extreme ultraviolet (UV) region. The simulations assume an 800 nm pump pulse with 30 fs 10 $mu$J pulse energy, launched into a 9 bar Ne-filled fiber with $34~mu$m initial core diameter that is then tapered to a $10~mu$m core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90-120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure.
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensation. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region.
318 - S. Davtyan , D. Novoa , Y. Chen 2019
Broadband-tunable sources of circularly-polarized light are crucial in fields such as laser science, biomedicine and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components, and are limited by the availability of suitably transparent crystals and glasses. Although gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path-lengths, and high Raman conversion efficiency, it is unable to preserve circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on helically-twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining circular polarization state against external perturbations. This makes it possible to generate pure circularly-polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with fully-controllable polarization state.
In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous dispersion regime at 1030 nm with pulses of 30 fs duration and 7 $mu$J energy. Our calculations indicate high conversion efficiency of $>$35% (2.5 $mu$J) after propagating 3.6 cm fiber length which is due to the strong shock effect and plasma induced blue-shifted soliton. It is observed that the efficiency of fundamental LP$_{01}$-mode is about 15% which is much smaller than LP$_{02}$-like mode and also emitted at longer wavelength of 270 nm.
We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagome-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا