Do you want to publish a course? Click here

Inverse Seesaw, dark matter and the Hubble tension

215   0   0.0 ( 0 )
 Added by Mathias Pierre
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the inverse Seesaw scenario for neutrino masses with the approximate Lepton number symmetry broken dynamically by a scalar with Lepton number two. We show that the Majoron associated to the spontaneous symmetry breaking can alleviate the Hubble tension through its contribution to $Delta N_text{eff}$ and late decays to neutrinos. Among the additional fermionic states required for realizing the inverse Seesaw mechanism, sterile neutrinos at the keV-MeV scale can account for all the dark matter component of the Universe if produced via freeze-in from the decays of heavier degrees of freedom.



rate research

Read More

230 - Yuchao Gu , Maxim Khlopov , Lei Wu 2020
The recent measurements of the cosmological parameter $H_0$ from the direct local observations and the inferred value from the Cosmic Microwave Background show $sim 4 sigma$ discrepancy. This may indicate new physics beyond the standard $Lambda$CDM. We investigate the keV gravitino dark matter that has a small fraction of non-thermal component (e.g. from the late decay of NLSP bino) under various cosmological constraints. We find such a scenario is highly predictive and can be tested by searching for the dilepton plus missing energy events at the LHC. Besides, we also discuss its implication for Hubble tension, however, which can be reduced to $3sigma$ level marginally.
116 - Subhajit Ghosh , Rishi Khatri , 2019
New interactions of neutrinos can stop them from free streaming even after the weak interaction freeze-out. This results in a phase shift in the cosmic microwave background (CMB) acoustic peaks which can alleviate the Hubble tension. In addition, the perturbations in neutrinos do not decay away on horizon entry and contribute to metric perturbation enhancing the matter power spectrum. We demonstrate that this acoustic phase shift can be achieved using new interactions of standard left-handed neutrinos with dark matter without changing the number of effective relativistic degrees of freedom. Using Planck CMB and the WiggleZ galaxy survey $ (kle 0.12 h {rm Mpc}^{-1} ) $ data, we demonstrate that in this model the Hubble tension reduces to approximately $ 2.1 sigma$. Our model predicts potentially observable modifications of the CMB B-modes and the matter power spectrum that can be observed in future data sets.
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requiring the axion to have a matter-power spectrum that matches that of cold dark matter constrains the magnitude of the axion couplings to the visible sector. Comparing these limits to current and future experimental efforts, we find that many searches require axions with an abnormally large coupling to Standard Model fields, independently of how the axion was populated in the early universe. We survey mechanisms that can alleviate the bounds, namely, the introduction of large charges, various forms of kinetic mixing, a clockwork structure, and imposing a discrete symmetry. We provide an explicit model for each case and explore their phenomenology and viability to produce detectable ultralight axion dark matter.
106 - Xinyi Zhang , Shun Zhou 2021
In this paper, we present a systematic investigation on simple inverse seesaw models for neutrino masses and flavor mixing based on the modular $S^{}_4$ symmetry. Two right-handed neutrinos and three extra fermion singlets are introduced to account for light neutrino masses through the inverse seesaw mechanism, and to provide a keV-mass sterile neutrino as the candidate for warm dark matter in our Universe. Considering all possible modular forms with weights no larger than four, we obtain twelve models, among which we find one is in excellent agreement with the observed lepton mass spectra and flavor mixing. Moreover, we explore the allowed range of the sterile neutrino mass and mixing angles, by taking into account the direct search of $X$-ray line and the Lyman-$alpha$ observations. The model predictions for neutrino mixing parameters and the dark matter abundance will be readily testable in future neutrino oscillation experiments and cosmological observations.
The generation of neutrino masses by inverse seesaw mechanisms has advantages over other seesaw models since the potential new physics can be produced at the TeV scale. We propose a model that generates the inverse seesaw mechanism via spontaneous breaking of the lepton number, by extending the Standard Model with two scalar singlets and two fermion singlets both charged under lepton number. The model gives rise to a massless Majoron and a massive pseudoscalar which we dub as massive Majoron, which corresponds to the Nambu-Goldstone boson of the breaking of lepton number. If the massive Majoron is stable in cosmological time, it might play the role of a suitable Dark Matter candidate. In this scenario, we examine the model with a massive Majoron in the keV range. In this regime, its decay mode to neutrinos is sensitive to the ratio between the vevs of the new scalars ($omega$), and it vanishes when $ omega simeq sqrt{2/3}$, which is valid within a large region in the parameter space. On the other hand, the cosmological lifetime for the Dark Matter candidate places constraints on its mass via scalar decays. In addition, simple mechanisms that explain the Dark Matter relic abundance within this context and plausible modifications to the proposed setup are briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا