Do you want to publish a course? Click here

Brightest Cluster Galaxies Are Statistically Special From $z=0.3$ to $z=1$

54   0   0.0 ( 0 )
 Added by Roohi Dalal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Brightest Cluster Galaxies (BCGs) in $sim5000$ galaxy clusters from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. The sample is selected over an area of 830 $textrm{deg}^2$ and is uniformly distributed in redshift over the range $z=0.3-1.0$. The clusters have stellar masses in the range $10^{11.8} - 10^{12.9} M_{odot}$. We compare the stellar mass of the BCGs in each cluster to what we would expect if their masses were drawn from the mass distribution of the other member galaxies of the clusters. The BCGs are found to be special, in the sense that they are not consistent with being a statistical extreme of the mass distribution of other cluster galaxies. This result is robust over the full range of cluster stellar masses and redshifts in the sample, indicating that BCGs are special up to a redshift of $z=1.0$. However, BCGs with a large separation from the center of the cluster are found to be consistent with being statistical extremes of the cluster member mass distribution. We discuss the implications of these findings for BCG formation scenarios.



rate research

Read More

Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6 - 8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ~200 arcmin^2. These clusters were selected to be excellent lenses and we find similar high-redshift sample sizes and magnitude distributions as CLASH. We discover 321 candidate galaxies with photometric redshifts between z ~ 6 to z ~ 8, including extremely bright objects with H-band magnitudes of m_AB ~ 23 mag. As a sample, the observed (lensed) magnitudes of these galaxies are among the brightest known at z> 6, comparable to much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope.
528 - I.M. Whiley 2008
[Abridged] We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey. These data are combined with photometry from Aragon-Salamanca et al. (1998) and a low-redshift comparison sample from von der Linden et al. (2007). The K-band Hubble diagram for BCGs exhibits very low scatter (~0.35mag) since z=1. The colour and $K$-band luminosity evolution of the BCGs are in good agreement with passively-evolving stellar populations formed at z>2. We do not detect any significant change in the stellar mass of the BCG since z~1. These results do not seem to depend on the velocity dispersion of the parent cluster. There is a correlation between the 1D velocity dispersion of the clusters and the K-band luminosity of the BCGs (after correcting for passive evolution). The clusters with large velocity dispersions tend to have brighter BCGs, i.e., BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by ~70% over a two-order-of-magnitude range in cluster mass. This dependency doesnt change significantly with redshift. The models of De Lucia & Blaizot (2007) predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3-4 since z=1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCGs stellar mass and the velocity dispersion of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured fixed metric aperture magnitudes while the models compute total luminosities.
We report the detection of extended warm ionized gas in two powerful high-redshift radio galaxies, NVSS J210626-314003 at z=2.10 and TXS 2353-003 at z=1.49, that does not appear to be associated with the radio jets. This is contrary to what would be expected from the alignment effect, a characteristic feature of distant, powerful radio galaxies at z> 0.6. The gas also has smaller velocity gradients and line widths than most other high-z radio galaxies with similar data. Both galaxies are part of a systematic study of 50 high-redshift radio galaxies with SINFONI, and are the only two that are characterized by the presence of high surface-brightness gas not associated with the jet axis and by the absence of such gas aligned with the jet. Both galaxies are spatially resolved with ISAAC broadband imaging covering the rest-frame R band, and have extended wings that cannot be attributed to line contamination. We argue that the gas and stellar properties of these galaxies are more akin to gas-rich brightest cluster galaxies in cool-core clusters than the general population of high-redshift radio galaxies at z>2. In support of this interpretation, one of our sources, TXS 2353-003, for which we have Halpha narrowband imaging, is associated with an overdensity of candidate Halpha emitters by a factor of 8 relative to the field at z=1.5. We discuss possible scenarios of the evolutionary state of these galaxies and the nature of their emission line gas within the context of cyclical AGN feedback.
Distant powerful radio-loud active galactic nuclei (RLAGN) tend to reside in dense environments and are commonly found in proto-clusters at z > 1.3. We examine whether this occurs because RLAGN are hosted by massive galaxies, which preferentially reside in rich environments. We compare the environments of powerful RLAGN at 1.3 < z < 3.2 from the CARLA survey to a sample of radio-quiet galaxies matched in mass and redshift. We find the environments of RLAGN are significantly denser than those of radio-quiet galaxies, implying that not more than 50% of massive galaxies in this epoch can host powerful radio-loud jets. This is not an observational selection effect as we find no evidence to suggest it is easier to observe the radio emission when the galaxy resides in a dense environment. We therefore suggest that the dense Mpc-scale environment fosters the formation of a radio-jet from an AGN. We show that the number density of potential RLAGN host galaxies is consistent with every > 10^14 solar mass cluster having experienced powerful radio-loud feedback of duration ~60 Myr during 1.3 < z < 3.2. This feedback could heat the intracluster medium to the extent of 0.5-1 keV per gas particle, which could limit the amount of gas available for further star formation in the proto-cluster galaxies.
The mass and structural evolution of massive galaxies is one of the hottest topics in galaxy formation. This is because it may reveal invaluable insights into the still debated evolutionary processes governing the growth and assembly of spheroids. However, direct comparison between models and observations is usually prevented by the so-called progenitor bias, i.e., new galaxies entering the observational selection at later epochs, thus eluding a precise study of how pre-existing galaxies actually evolve in size. To limit this effect, we here gather data on high-redshift brightest group and cluster galaxies, evolve their (mean) host halo masses down to z=0 along their main progenitors, and assign as their descendants local SDSS central galaxies matched in host halo mass. At face value, the comparison between high redshift and local data suggests a noticeable increase in stellar mass of a factor of >2 since z~1, and of >2.5 in mean effective radius. We then compare the inferred stellar mass and size growth with those predicted by hierarchical models for central galaxies, selected at high redshifts to closely match the halo and stellar mass bins as in the data. Only hierarchical models characterized by very limited satellite stellar stripping and parabolic orbits are capable of broadly reproducing the stellar mass and size increase of a factor ~2-4 observed in cluster galaxies since z ~1. The predicted, average (major) merger rate since z~1 is in good agreement with the latest observational estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا