Do you want to publish a course? Click here

Why z > 1 radio-loud galaxies are commonly located in proto-clusters

112   0   0.0 ( 0 )
 Added by Nina Hatch
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Distant powerful radio-loud active galactic nuclei (RLAGN) tend to reside in dense environments and are commonly found in proto-clusters at z > 1.3. We examine whether this occurs because RLAGN are hosted by massive galaxies, which preferentially reside in rich environments. We compare the environments of powerful RLAGN at 1.3 < z < 3.2 from the CARLA survey to a sample of radio-quiet galaxies matched in mass and redshift. We find the environments of RLAGN are significantly denser than those of radio-quiet galaxies, implying that not more than 50% of massive galaxies in this epoch can host powerful radio-loud jets. This is not an observational selection effect as we find no evidence to suggest it is easier to observe the radio emission when the galaxy resides in a dense environment. We therefore suggest that the dense Mpc-scale environment fosters the formation of a radio-jet from an AGN. We show that the number density of potential RLAGN host galaxies is consistent with every > 10^14 solar mass cluster having experienced powerful radio-loud feedback of duration ~60 Myr during 1.3 < z < 3.2. This feedback could heat the intracluster medium to the extent of 0.5-1 keV per gas particle, which could limit the amount of gas available for further star formation in the proto-cluster galaxies.

rate research

Read More

We observed star-forming galaxies at z~1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [OII] emitters identified via narrow-band imaging and photometric redshifts from grizy photometry. We used VLT/KMOS to carry out Halpha integral field spectroscopy of 46 galaxies in total. Ionized gas maps, star formation rates and velocity fields were derived from the Halpha emission line. We quantified morphological and kinematical asymmetries to test for potential gravitational (e.g. galaxy-galaxy) or hydrodynamical (e.g. ram-pressure) interactions. Halpha emission was detected in 36 targets. 34 of the galaxies are members of two (proto-)clusters at z=1.47, confirming our selection strategy to be highly efficient. By fitting model velocity fields to the observed ones, we determined the intrinsic maximum rotation velocity Vmax of 14 galaxies. Utilizing the luminosity-velocity (Tully-Fisher) relation, we find that these galaxies are more luminous than their local counterparts of similar mass by up to ~4 mag in the rest-frame B-band. In contrast to field galaxies at z<1, the offsets of the z~1.5 (proto-)cluster galaxies from the local Tully-Fisher relation are not correlated with their star formation rates but with the ratio between Vmax and gas velocity dispersion sigma_g. This probably reflects that, as is observed in the field at similar redshifts, fewer disks have settled to purely rotational kinematics and high Vmax/sigma_g ratios. Due to relatively low galaxy velocity dispersions (sigma_v < 400 km/s) of the (proto-)clusters, gravitational interactions likely are more efficient, resulting in higher kinematical asymmetries, than in present-day clusters. (abbr.)
We study the cluster environment for a sample of 21 radio loud AGN from the 3CR catalog at z>1, 12 radio galaxies and 9 quasars with HST images in the optical and IR. We use two different approaches to determine cluster candidates. We identify the early type galaxies (ETGs) in every field by modeling each of the sources within a 40 radius of the targets with a Sersic profile. Using a simple passive evolution model, we derive the expected location of the ETGs on the red sequence (RS) in the color-magnitude diagram for each of the fields of our sources. For seven targets, the model coincides with the position of the ETGs. A second approach involves a search for over densities. We compare the object densities of the sample as a whole and individually against control fields taken from the GOODS-S region of 3D-HST survey. With this method we determine the fields of 10 targets to be cluster candidates. Four cluster candidates are found by both methods. The two methods disagree in some cases, depending on the specific properties of each field. For the most distant radio galaxy in the 3CR catalog (3C257 at z = 2.47), we identify a population of bluer ETGs that lie on the expected location of the RS model for that redshift. This appears to be the general behavior of ETGs in our fields and it is possibly a signature of the evolution of such galaxies. Our results are consistent with half of the z > 1 radio galaxies being located in dense, rapidly evolving environments.
We investigate the role of the environment in processing molecular gas in radio galaxies (RGs). We observed five RGs at $z=0.4-2.6$ in dense Mpc-scale environment with the IRAM-30m telescope. We set four upper-limits and report a tentative CO(7$rightarrow$6) detection for COSMOS-FRI 70 at $z=2.63$, which is the most distant brightest cluster galaxy (BCG) candidate detected in CO. We speculate that the cluster environment might have played a role in preventing the refueling via environmental mechanisms such as galaxy harassment, strangulation, ram-pressure, or tidal stripping. The RGs of this work are excellent targets for ALMA as well as next generation telescopes such as the James Webb Space Telescope.
Cosmological simulations predict the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-alpha radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA 22 proto-cluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-alpha emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive proto-clusters.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and high brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا