Do you want to publish a course? Click here

Role of quadrupole deformation and continuum effects in the island of inversion nuclei $^{28,29,31}$F

62   0   0.0 ( 0 )
 Added by Kevin Fossez
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The properties of nuclei in the ``island of inversion (IOI) around Z=10 and N=20 are the focus of current nuclear physics research. Recent studies showed that $^{28}$F has a negative-parity ground state (g.s.) and thus lies within the southern shore of the IOI, and $^{29}$F presents a halo structure in its g.s., but it is unclear which effects, such as deformation, shell evolution due to tensor forces, or couplings to the continuum, lead to this situation. We investigate the role of quadrupole deformation and continuum effects on the single-particle (s.p.) structure of $^{28,29,31}$F from a relativistic mean-field (RMF) approach, and show how both phenomena can lead to a negative-parity g.s. in $^{28}$F and halo structures in $^{29,31}$F. We solve the Dirac equation in the complex-momentum (Berggren) representation for a potential with quadrupole deformation at the first order obtained from RMF calculations using the NL3 interaction, and calculate the continuum level densities using the Greens function method. We extract s.p. energies and widths from the continuum level densities to construct Nilsson diagrams, and analyse the evolution of both the widths and occupation probabilities of relevant Nilsson orbitals in $^{28}$F and find that some amount of prolate deformation must be present. In addition, we calculate the density distributions for bound Nilsson orbitals near the Fermi surface in $^{29,31}$F and reveal that for a quadrupole deformation $0.3 leq beta_2 leq 0.45$ (prolate), halo tails appear at large distances. We also demonstrate that while in the spherical case the $pf$ shells are already inverted and close to the neutron emission threshold, a small amount of quadrupole deformation can reduce the gap between $fp$ shells and increase the role of the continuum, ultimately leading to the negative parity in the g.s. of $^{28}$F and the halo structures in $^{29,31}$F.



rate research

Read More

The deformation of Ne isotopes in the island-of-inversion region is determined by the double-folding model with the Melbourne $g$-matrix and the density calculated by the antisymmetrized molecular dynamics (AMD). The double-folding model reproduces, with no adjustable parameter, the measured reaction cross sections for the scattering of $^{28-32}$Ne from $^{12}$C at 240MeV/nucleon. The quadrupole deformation thus determined is around 0.4 in the island-of-inversion region and $^{31}$Ne is a halo nuclei with large deformation. We propose the Woods-Saxon model with a suitably chosen parameterization set and the deformation given by the AMD calculation as a convenient way of simulating the density calculated directly by the AMD. The deformed Woods-Saxon model provides the density with the proper asymptotic form. The pairing effect is investigated, and the importance of the angular momentum projection for obtaining the large deformation in the island-of-inversion region is pointed out.
75 - Giuliano Giacalone 2020
Preliminary data by the STAR collaboration at the BNL Relativistic Heavy Ion Collider shows that the elliptic flow, $v_2$, and the average transverse momentum, $langle p_t rangle$, of final-state hadrons produced in high-multiplicity $^{238}$U+$^{238}$U collisions are negatively correlated. This observation brings experimental evidence of a significant prolate deformation, $betaapprox 0.3$, in the colliding $^{238}$U nuclei. I show that a quantitative description of this new phenomenon can be achieved within the hydrodynamic framework of heavy-ion collisions, and that thus such kind of data in the context of high-energy nuclear experiments can help constrain the quadrupole deformation of the colliding species.
Detailed spectroscopy of the neutron-unbound nucleus $^{28}$F has been performed for the first time following proton/neutron removal from $^{29}$Ne/$^{29}$F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the $^{27}$F$^{(*)}+n$ and $^{26}$F$^{(*)}+2n$ coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the $^{28}$F ground state, with $S_n(^{28}$F$)=-199(6)$ keV, while analysis of the $2n$ decay channel allowed a considerably improved $S_n(^{27}$F$)=1620(60)$ keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of $^{28}$F. Importantly, in the case of the ground state, the reconstructed $^{27}$F$+n$ momentum distribution following neutron removal from $^{29}$F indicates that it arises mainly from the $1p_{3/2}$ neutron intruder configuration. This demonstrates that the island of inversion around $N=20$ includes $^{28}$F, and most probably $^{29}$F, and suggests that $^{28}$O is not doubly magic.
A parametrization of octupole plus quadrupole deformation, in terms of intrinsic variables defined in the rest frame of the overall tensor of inertia, is presented and discussed. The model is valid for situations close to the axial symmetry, but non axial deformation parameters are not frozen to zero. The properties of the octupole excitations in the deformed Thorium isotopes Th-226, Th-228 are interpreted in the frame of this model. A tentative interpretation of octupole oscillations in nuclei close to the X(5) symmetry, in terms of an exactly separable potential, is also discussed.
We report the first observation of high-spin states in nuclei in the vicinity of the island of inversion, populated via the 18O+18O fusion reaction at an incident beam energy of 34 MeV. The fusion reaction mechanism circumvents the limitations of non-equilibrated reactions used to populate these nuclei. Detailed spin-parity measurements in these difficult to populate nuclei have been possible from the observed coincidence anisotropy and the linear polarization measurements. The spectroscopy of 33,34P and 33S is presented in detail along with the results of calculations within the shell model framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا