Do you want to publish a course? Click here

A GCICA Grant-Free Random Access Scheme for M2M Communications in Crowded Massive MIMO Systems

300   0   0.0 ( 0 )
 Added by Jun Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A high success rate of grant-free random access scheme is proposed to support massive access for machine-to-machine communications in massive multipleinput multiple-output systems. This scheme allows active user equipments (UEs) to transmit their modulated uplink messages along with super pilots consisting of multiple sub-pilots to a base station (BS). Then, the BS performs channel state information (CSI) estimation and uplink message decoding by utilizing a proposed graph combined clustering independent component analysis (GCICA) decoding algorithm, and then employs the estimated CSIs to detect active UEs by utilizing the characteristic of asymptotic favorable propagation of massive MIMO channel. We call this proposed scheme as GCICA based random access (GCICA-RA) scheme. We analyze the successful access probability, missed detection probability, and uplink throughput of the GCICA-RA scheme. Numerical results show that, the GCICA-RA scheme significantly improves the successful access probability and uplink throughput, decreases missed detection probability, and provides low CSI estimation error at the same time.



rate research

Read More

A new random access scheme is proposed to solve the intra-cell pilot collision for M2M communication in crowded asynchronous massive multiple-input multiple-output (MIMO) systems. The proposed scheme utilizes the proposed estimation of signal parameters via rotational invariance technique enhanced (ESPRIT-E) method to estimate the effective timing offsets, and then active UEs obtain their timing errors from the effective timing offsets for uplink message transmission. We analyze the mean squared error of the estimated effective timing offsets of UEs, and the uplink throughput. Simulation results show that, compared to the exiting random access scheme for the crowded asynchronous massive MIMO systems, the proposed scheme can improve the uplink throughput and estimate the effective timing offsets accurately at the same time.
Cell-free (CF) massive multiple-input multiple-output (MIMO) is a promising solution to provide uniform good performance for unmanned aerial vehicle (UAV) communications. In this paper, we propose the UAV communication with wireless power transfer (WPT) aided CF massive MIMO systems, where the harvested energy (HE) from the downlink WPT is used to support both uplink data and pilot transmission. We derive novel closed-form downlink HE and uplink spectral efficiency (SE) expressions that take hardware impairments of UAV into account. UAV communications with current small cell (SC) and cellular massive MIMO enabled WPT systems are also considered for comparison. It is significant to show that CF massive MIMO achieves two and five times higher 95%-likely uplink SE than the ones of SC and cellular massive MIMO, respectively. Besides, the large-scale fading decoding receiver cooperation can reduce the interference of the terrestrial user. Moreover, the maximum SE can be achieved by changing the time-splitting fraction. We prove that the optimal time-splitting fraction for maximum SE is determined by the number of antennas, altitude and hardware quality factor of UAVs. Furthermore, we propose three UAV trajectory design schemes to improve the SE. It is interesting that the angle search scheme performs best than both AP search and line path schemes. Finally, simulation results are presented to validate the accuracy of our expressions.
87 - Huimei Han , Xudong Guo , Ying Li 2016
A new scheme to resolve the intra-cell pilot collision for M2M communication in crowded massive multiple-input multiple-output (MIMO) systems is proposed. The proposed scheme permits those failed user equipments (UEs), judged by a strongest-user collision resolution (SUCR) protocol, to contend for the idle pilots, i.e., the pilots that are not selected by any UE in the initial step. This scheme is called as SUCR combined idle pilots access (SUCR-IPA). To analyze the performance of the SUCR-IPA scheme, we develop a simple method to compute the access success probability of the UEs in each random access slot (RAST). The simulation results coincide well with the analysis. It is also shown that, compared to the SUCR protocol, the proposed SUCR-IPA scheme increases the throughput of the system significantly, and thus decreases the number of access attempts dramatically.
86 - Ke Lai , Jing Lei , Yansha Deng 2021
Grant-free sparse code multiple access (GF-SCMA) is considered to be a promising multiple access candidate for future wireless networks. In this paper, we focus on characterizing the performance of uplink GF-SCMA schemes in a network with ubiquitous connections, such as the Internet of Things (IoT) networks. To provide a tractable approach to evaluate the performance of GF-SCMA, we first develop a theoretical model taking into account the property of multi-user detection (MUD) in the SCMA system. We then analyze the error rate performance of GF-SCMA in the case of codebook collision to investigate the reliability of GF-SCMA when reusing codebook in massive IoT networks. For performance evaluation, accurate approximations for both success probability and average symbol error probability (ASEP) are derived. To elaborate further, we utilize the analytical results to discuss the impact of codeword sparse degree in GFSCMA. After that, we conduct a comparative study between SCMA and its variant, dense code multiple access (DCMA), with GF transmission to offer insights into the effectiveness of these two schemes. This facilitates the GF-SCMA system design in practical implementation. Simulation results show that denser codebooks can help to support more UEs and increase the reliability of data transmission in a GF-SCMA network. Moreover, a higher success probability can be achieved by GFSCMA with denser UE deployment at low detection thresholds since SCMA can achieve overloading gain.
110 - Dongdong Jiang , , Ying Cui 2021
Device activity detection is one main challenge in grant-free massive access, which is recently proposed to support massive machine-type communications (mMTC). Existing solutions for device activity detection fail to consider inter-cell interference generated by massive IoT devices or important prior information on device activities and inter-cell interference. In this paper, given different numbers of observations and network parameters, we consider both non-cooperative device activity detection and cooperative device activity detection in a multi-cell network, consisting of many access points (APs) and IoT devices. Under each activity detection mechanism, we consider the joint maximum likelihood (ML) estimation and joint maximum a posterior probability (MAP) estimation of both device activities and interference powers, utilizing tools from probability, stochastic geometry, and optimization. Each estimation problem is a challenging non-convex problem, and a coordinate descent algorithm is proposed to obtain a stationary point. Each proposed joint ML estimation extends the existing one for a single-cell network by considering the estimation of interference powers, together with the estimation of device activities. Each proposed joint MAP estimation further enhances the corresponding joint ML estimation by exploiting prior distributions of device activities and interference powers. The proposed joint ML estimation and joint MAP estimation under cooperative detection outperform the respective ones under non-cooperative detection at the costs of increasing backhaul burden, knowledge of network parameters, and computational complexities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا