No Arabic abstract
We define circuits given by unitary representations of Lorentzian conformal field theory in 3 and 4 dimensions. Our circuits start from a spinning primary state, allowing us to generalize formulas for the circuit complexity obtained from circuits starting from scalar primary states. These results are nicely reproduced in terms of the geometry of coadjoint orbits of the conformal group. In contrast to the complexity geometry obtained from scalar primary states, the geometry is more complicated and the existence of conjugate points, signaling the saturation of complexity, remains open.
We carry out a systematic study of primary operators in the conformal field theory of a free Weyl fermion. Using SO(4,2) characters we develop counting formulas for primaries constructed using a fixed number of fermion fields. By specializing to particular classes of primaries, we derive very explicit formulas for the generating functions for the number of primaries in these classes. We present a duality map between primary operators in the fermion field theory and polynomial functions. This allows us to construct the primaries that were counted. Next we show that these classes of primary fields correspond to polynomial functions on certain permutation orbifolds. These orbifolds have palindromic Hilbert series.
We establish a correspondence between perturbative classical gluon and gravitational radiation emitted by spinning sources, to linear order in spin. This is an extension of the non-spinning classical perturbative double copy and uses the same color-to-kinematic replacements. The gravitational theory has a scalar (dilaton) and a 2-form field (the Kalb-Ramon axion) in addition to the graviton. In arXiv:1712.09250, we computed axion radiation in the gravitational theory to show that the correspondence fixes its action. Here, we present complete details of the gravitational computation. In particular, we also calculate the graviton and dilaton amplitudes in this theory and find that they precisely match with the predictions of the double copy. This constitutes a non-trivial check of the classical double copy correspondence, and brings us closer to the goal of simplifying the calculation of gravitational wave observables for astrophysically relevant sources.
We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.
A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einsteins equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of Tensor Network Renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of Quantum Extremal Islands in the negative (or positive) Cosmological Constant with radiation in the background of Friedmann-Lema$hat{i}$tre-Robertson-Walker (FLRW) space-time i.e the presence and absence of islands in anti-de Sitter and the de Sitter spacetime having SO(2, 3) and SO(1, 4) isometries respectively. Without using any explicit details of any gravity model, we study the behaviour of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above-mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, Out-of-Time Ordered Correlators, and entanglement entropy of the modes of the squeezed state, in different parameter spaces, we conclude the non-universality of these measures. Their remarkably different features in the different parameter spaces suggest their dependence on the parameters of the model under consideration.