No Arabic abstract
This paper proposes a practical method for the definition of multiple communication modes when antennas operate in the near-field region, by realizing ad-hoc beams exploiting the focusing capability of large antennas. The beamspace modeling proposed to define the communication modes is then exploited to derive expressions for the number of communication modes (i.e., degrees of freedom) in a generic setup, beyond the traditional paraxial approximation, together with closed-form definitions for the basis set at the transmitting and receiving antennas for several cases of interest, such as for the communication between a large antenna and a small antenna. Numerical results indicate that quasi-optimal communication can be obtained starting from focusing functions. This translates into the possibility of a significant enhancement of the channel capacity even in line-of-sight channel condition without the need of resorting to optimal but complex phase/amplitude antenna profiles as well as intensive numerical simulations. Traditional results valid under paraxial approximation are revised in light of the proposed modeling, showing that similar conclusions can be obtained from different perspectives.
Reconfigurable intelligent surface (RIS)-empowered communications is on the rise and is a promising technology envisioned to aid in 6G and beyond wireless communication networks. RISs can manipulate impinging waves through their electromagnetic elements enabling some sort of a control over the wireless channel. In this paper, the potential of RIS technology is explored to perform equalization over-the-air for frequency-selective channels whereas, equalization is generally conducted at either the transmitter or receiver in conventional communication systems. Specifically, with the aid of an RIS, the frequency-selective channel from the transmitter to the RIS is transformed to a frequency-flat channel through elimination of inter-symbol interference (ISI) components at the receiver. ISI is eliminated by adjusting the phases of impinging signals particularly to maximize the incoming signal of the strongest tap. First, a general end-to-end system model is provided and a continuous to discrete-time signal model is presented. Subsequently, a probabilistic analysis for the elimination of ISI terms is conducted and reinforced with computer simulations. Furthermore, a theoretical error probability analysis is performed along with computer simulations. It is demonstrated that with the proposed method, ISI can successfully be eliminated and the RIS-aided communication channel can be converted from frequency-selective to frequency-flat.
Reconfigurable intelligent surfaces (RISs) have promising coverage and data rate gains for wireless communication systems in 5G and beyond. Prior work has mainly focused on analyzing the performance of these surfaces using computer simulations or lab-level prototypes. To draw accurate insights about the actual performance of these systems, this paper develops an RIS proof-of-concept prototype and extensively evaluates its potential gains in the field and under realistic wireless communication settings. In particular, a 160-element reconfigurable surface, operating at a 5.8GHz band, is first designed, fabricated, and accurately measured in the anechoic chamber. This surface is then integrated into a wireless communication system and the beamforming gains, path-loss, and coverage improvements are evaluated in realistic outdoor communication scenarios. When both the transmitter and receiver employ directional antennas and with 5m and 10m distances between the transmitter-RIS and RIS-receiver, the developed RIS achieves $15$-$20$dB gain in the signal-to-noise ratio (SNR) in a range of $pm60^circ$ beamforming angles. In terms of coverage, and considering a far-field experiment with a blockage between a base station and a grid of mobile users and with an average distance of $35m$ between base station (BS) and the user (through the RIS), the RIS provides an average SNR improvement of $6$dB (max $8$dB) within an area $> 75$m$^2$. Thanks to the scalable RIS design, these SNR gains can be directly increased with larger RIS areas. For example, a 1,600-element RIS with the same design is expected to provide around $26$dB SNR gain for a similar deployment. These results, among others, draw useful insights into the design and performance of RIS systems and provide an important proof for their potential gains in real-world far-field wireless communication environments.
Holographic communication is intended as an holistic way to manipulate with unprecedented flexibility the electromagnetic field generated or sensed by an antenna. This is of particular interest when using large antennas at high frequency (e.g., the millimeter wave or terahertz), whose operating condition may easily fall in the Fresnel propagation region (radiating near-field), where the classical plane wave propagation assumption is no longer valid. This paper analyzes the optimal communication involving large intelligent surfaces, realized for example with metamaterials as possible enabling technology for holographic communication. It is shown that traditional propagation models must be revised and that, when exploiting spherical wave propagation in the Fresnel region with large surfaces, new opportunities are opened, for example, in terms of the number of orthogonal communication channels.
In this paper, we investigate the design of robust and secure transmission in intelligent reflecting surface (IRS) aided wireless communication systems. In particular, a multi-antenna access point (AP) communicates with a single-antenna legitimate receiver in the presence of multiple single-antenna eavesdroppers, where the artificial noise (AN) is transmitted to enhance the security performance. Besides, we assume that the cascaded AP-IRS-user channels are imperfect due to the channel estimation error. To minimize the transmit power, the beamforming vector at the transmitter, the AN covariance matrix, and the IRS phase shifts are jointly optimized subject to the outage rate probability constraints under the statistical cascaded channel state information (CSI) error model that usually models the channel estimation error. To handle the resulting non-convex optimization problem, we first approximate the outage rate probability constraints by using the Bernstein-type inequality. Then, we develop a suboptimal algorithm based on alternating optimization, the penalty-based and semidefinite relaxation methods. Simulation results reveal that the proposed scheme significantly reduces the transmit power compared to other benchmark schemes.
Reconfigurable intelligent surfaces (RISs) provide an interface between the electromagnetic world of the wireless propagation environment and the digital world of information science. Simple yet sufficiently accurate path loss models for RISs are an important basis for theoretical analysis and optimization of RIS-assisted wireless communication systems. In this paper, we refine our previously proposed free-space path loss model for RISs to make it simpler, more applicable, and easier to use. In the proposed path loss model, the impact of the radiation patterns of the antennas and unit cells of the RIS is formulated in terms of an angle-dependent loss factor. The refined model gives more accurate estimates of the path loss of RISs comprised of unit cells with a deep sub-wavelength size. The free-space path loss model of the sub-channel provided by a single unit cell is also explicitly provided. In addition, two fabricated RISs, which are designed to operate in the millimeter-wave (mmWave) band, are utilized to carry out a measurement campaign in order to characterize and validate the proposed path loss model for RIS-assisted wireless communications. The measurement results corroborate the proposed analytical model. The proposed refined path loss model for RISs reveals that the reflecting capability of a single unit cell is proportional to its physical aperture and to an angle-dependent factor. In particular, the far-field beamforming gain provided by an RIS is mainly determined by the total area of the surface and by the angles of incidence and reflection.