Do you want to publish a course? Click here

Clustering of Inertial Particles in Turbulent Flow Through a Porous Unit Cell

150   0   0.0 ( 0 )
 Added by Sourabh Apte
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Direct numerical simulation is used to investigate effects of turbulent flow in the confined geometry of a face-centered cubic porous unit cell on the transport, clustering, and deposition of fine particles at different Stokes numbers ($St = 0.01, 0.1, 0.5, 1, 2$) and at a pore Reynolds number of 500. Particles are advanced using one-way coupling and collision of particles with pore walls is modeled as perfectly elastic with specular reflection. Tools for studying inertial particle dynamics and clustering developed for homogeneous flows are adapted to take into account the embedded, curved geometry of the pore walls. The pattern and dynamics of clustering are investigated using the volume change of Voronoi tesselation in time to analyze the divergence and convergence of the particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is present at large volumes, while cluster destruction is prominent at small volumes and these effects are amplified with Stokes number. However, unlike homogeneous, isotropic turbulence, formation of large number of very small volumes was observed at all Stokes numbers and is attributed to the collision of particles with the pore wall. Multiscale wavelet analysis of the particle number density showed peak of clustering shifts towards larger scales with increase in Stokes number. Scale-dependent skewness and flatness quantify the intermittent void and cluster distribution, with cluster formation observed at small scales for all Stokes numbers, and void regions at large scales for large Stokes numbers.

rate research

Read More

The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels, occupies about $40%$ of the cross-section at Reynolds numbers $Re_tau$ ranging from $1000$ to $4000$. The influence of the QC region and its boundaries on transport and accumulation of inertial particles has never been investigated before. Here, we first demonstrate that a QC is unidentifiable at $Re_tau = 180$, before an in-depth exploration of particle-laden turbulent channel flow at $Re_tau = 600$ is performed. The inertial spheres exhibited a tendency to accumulate preferentially in high-speed regions within the QC, i.e. contrary to the well-known concentration in low-speed streaks in the near-wall region. The particle wall-normal distribution, quantified by means of Voronoi volumes and particle number concentrations, varied abruptly across the QC-boundary and vortical flow structures appeared as void areas due to the centrifugal mechanism. The QC-boundary, characterized by a localized strong shear layer, appeared as a emph{barrier}, across which transport of inertial particles is hindered. Nevertheless, the statistics conditioned in QC-frame show that the mean velocity of particles outside of the QC was towards the core, whereas particles within the QC tended to migrate towards the wall. Such upward and downward particle motions are driven by similar motions of fluid parcels. The present results show that the QC exerts a substantial influence on transport and accumulation of inertial particles, which is of practical relevance in high-Reynolds number channel flow.
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-fords). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.
The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modelled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions amongst inertial beads result in a non-trivial sampling of the flow, ranging from entrapment within vortices to preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is shown to be very different from free, non-interacting heavy particles, as well as inertialess chains [Picardo et al., Phys. Rev. Lett. 121, 244501 (2018)]. In addition, by considering two limiting cases, of a heavy-headed and a uniformly-inertial chain, we illustrate the critical role played by the mass distribution of such extended objects in their turbulent transport.
We study the transport of inertial particles in water flow in porous media. Our interest lies in understanding the accumulation of particles including the possibility of clogging. We propose that accumulation can be a result of hydrodynamic effects: the tortuous paths of the porous medium generate regions of dominating strain/vorticity, which favour the accumulation/dispersion of the inertial particles. Numerical simulations show that essentially two accumulation regimes are identified: for low and for high flow velocities. When particles accumulate in high-velocity regions, at the entrance of a pore throat, a clog is formed. The formation of a clog significantly modifies the flow, as the partial blockage of the pore causes a local redistribution of pressure. This redistribution can divert the upstream water flow into neighbouring pores. Moreover, we show that accumulation in high velocity regions occurs in heterogeneous media, but not in homogeneous media, where we refer to homogeneity with respect to the distribution of the pore throat diameters.
We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency $omega approx 0$, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves $tau_omega$ is faster than the turnover time $tau_textrm{NL}$, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with $tau_omega = tau_textrm{NL}$ is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with $tau_omega < tau_textrm{sw}$ (with $tau_textrm{sw}$ the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale $tau_textrm{NL}$ as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes modes with $omega approx 0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا