Do you want to publish a course? Click here

Quantification of the strength of inertial waves in a rotating turbulent flow

268   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency $omega approx 0$, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves $tau_omega$ is faster than the turnover time $tau_textrm{NL}$, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with $tau_omega = tau_textrm{NL}$ is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with $tau_omega < tau_textrm{sw}$ (with $tau_textrm{sw}$ the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale $tau_textrm{NL}$ as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes modes with $omega approx 0$.



rate research

Read More

The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modelled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions amongst inertial beads result in a non-trivial sampling of the flow, ranging from entrapment within vortices to preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is shown to be very different from free, non-interacting heavy particles, as well as inertialess chains [Picardo et al., Phys. Rev. Lett. 121, 244501 (2018)]. In addition, by considering two limiting cases, of a heavy-headed and a uniformly-inertial chain, we illustrate the critical role played by the mass distribution of such extended objects in their turbulent transport.
Direct numerical simulation is used to investigate effects of turbulent flow in the confined geometry of a face-centered cubic porous unit cell on the transport, clustering, and deposition of fine particles at different Stokes numbers ($St = 0.01, 0.1, 0.5, 1, 2$) and at a pore Reynolds number of 500. Particles are advanced using one-way coupling and collision of particles with pore walls is modeled as perfectly elastic with specular reflection. Tools for studying inertial particle dynamics and clustering developed for homogeneous flows are adapted to take into account the embedded, curved geometry of the pore walls. The pattern and dynamics of clustering are investigated using the volume change of Voronoi tesselation in time to analyze the divergence and convergence of the particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is present at large volumes, while cluster destruction is prominent at small volumes and these effects are amplified with Stokes number. However, unlike homogeneous, isotropic turbulence, formation of large number of very small volumes was observed at all Stokes numbers and is attributed to the collision of particles with the pore wall. Multiscale wavelet analysis of the particle number density showed peak of clustering shifts towards larger scales with increase in Stokes number. Scale-dependent skewness and flatness quantify the intermittent void and cluster distribution, with cluster formation observed at small scales for all Stokes numbers, and void regions at large scales for large Stokes numbers.
Complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluid. Resonance three-wave interaction processes -- decay instability and confluence of two waves -- are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach in inertial wave theory are investigated and discussed.
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-fords). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا