No Arabic abstract
We present a model for predicting electrocardiogram (ECG) abnormalities in short-duration 12-lead ECG signals which outperformed medical doctors on the 4th year of their cardiology residency. Such exams can provide a full evaluation of heart activity and have not been studied in previous end-to-end machine learning papers. Using the database of a large telehealth network, we built a novel dataset with more than 2 million ECG tracings, orders of magnitude larger than those used in previous studies. Moreover, our dataset is more realistic, as it consist of 12-lead ECGs recorded during standard in-clinics exams. Using this data, we trained a residual neural network with 9 convolutional layers to map 7 to 10 second ECG signals to 6 classes of ECG abnormalities. Future work should extend these results to cover a large range of ECG abnormalities, which could improve the accessibility of this diagnostic tool and avoid wrong diagnosis from medical doctors.
Automatic arrhythmia detection using 12-lead electrocardiogram (ECG) signal plays a critical role in early prevention and diagnosis of cardiovascular diseases. In the previous studies on automatic arrhythmia detection, most methods concatenated 12 leads of ECG into a matrix, and then input the matrix to a variety of feature extractors or deep neural networks for extracting useful information. Under such frameworks, these methods had the ability to extract comprehensive features (known as integrity) of 12-lead ECG since the information of each lead interacts with each other during training. However, the diverse lead-specific features (known as diversity) among 12 leads were neglected, causing inadequate information learning for 12-lead ECG. To maximize the information learning of multi-lead ECG, the information fusion of comprehensive features with integrity and lead-specific features with diversity should be taken into account. In this paper, we propose a novel Multi-Lead-Branch Fusion Network (MLBF-Net) architecture for arrhythmia classification by integrating multi-loss optimization to jointly learning diversity and integrity of multi-lead ECG. MLBF-Net is composed of three components: 1) multiple lead-specific branches for learning the diversity of multi-lead ECG; 2) cross-lead features fusion by concatenating the output feature maps of all branches for learning the integrity of multi-lead ECG; 3) multi-loss co-optimization for all the individual branches and the concatenated network. We demonstrate our MLBF-Net on China Physiological Signal Challenge 2018 which is an open 12-lead ECG dataset. The experimental results show that MLBF-Net obtains an average $F_1$ score of 0.855, reaching the highest arrhythmia classification performance. The proposed method provides a promising solution for multi-lead ECG analysis from an information fusion perspective.
Objective: A novel structure based on channel-wise attention mechanism is presented in this paper. Embedding with the proposed structure, an efficient classification model that accepts multi-lead electrocardiogram (ECG) as input is constructed. Methods: One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks, enabling the automatic extraction of features while classifying targets. We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map during the training process. An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task on the two out of the five ECG classes. The data in the MIT-BIH arrhythmia database is used and a series of control experiments is conducted. Results: Utilizing both leads of the ECG signals as input to the neural network classifier can achieve better classification results than those from using single channel inputs in different application scenarios. Models embedded with the channel-wise attention structure always achieve better scores on sensitivity and precision than the plain Resnet models. The proposed model exceeds the performance of most of the state-of-the-art models in ventricular ectopic beats (VEB) classification, and achieves competitive scores for supraventricular ectopic beats (SVEB). Conclusion: Adopting more lead ECG signals as input can increase the dimensions of the input feature maps, helping to improve both the performance and generalization of the network model. Significance: Due to its end-to-end characteristics, and the extensible intrinsic for multi-lead heart diseases diagnosing, the proposed model can be used for the real-time ECG tracking of ECG waveforms for Holter or wearable devices.
Electrocardiography (ECG) signal is a highly applied measurement for individual heart condition, and much effort have been endeavored towards automatic heart arrhythmia diagnosis based on machine learning. However, traditional machine learning models require large investment of time and effort for raw data preprocessing and feature extraction, as well as challenged by poor classification performance. Here, we propose a novel deep learning model, named Attention-Based Convolutional Neural Networks (ABCNN) that taking advantage of CNN and multi-head attention, to directly work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection. To evaluate the proposed approach, we conduct extensive experiments over a benchmark ECG dataset. Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types. We also provide convergence analysis of ABCNN and intuitively show the meaningfulness of extracted representation through visualization. The experimental results show that the proposed ABCNN outperforms the widely used baselines, which puts one step closer to intelligent heart disease diagnosis system.
Electrocardiogram (ECG) is the most widely used diagnostic tool to monitor the condition of the cardiovascular system. Deep neural networks (DNNs), have been developed in many research labs for automatic interpretation of ECG signals to identify potential abnormalities in patient hearts. Studies have shown that given a sufficiently large amount of data, the classification accuracy of DNNs could reach human-expert cardiologist level. However, despite of the excellent performance in classification accuracy, it has been shown that DNNs are highly vulnerable to adversarial noises which are subtle changes in input of a DNN and lead to a wrong class-label prediction with a high confidence. Thus, it is challenging and essential to improve robustness of DNNs against adversarial noises for ECG signal classification, a life-critical application. In this work, we designed a CNN for classification of 12-lead ECG signals with variable length, and we applied three defense methods to improve robustness of this CNN for this classification task. The ECG data in this study is very challenging because the sample size is limited, and the length of each ECG recording varies in a large range. The evaluation results show that our customized CNN reached satisfying F1 score and average accuracy, comparable to the top-6 entries in the CPSC2018 ECG classification challenge, and the defense methods enhanced robustness of our CNN against adversarial noises and white noises, with a minimal reduction in accuracy on clean data.
The development of new technology such as wearables that record high-quality single channel ECG, provides an opportunity for ECG screening in a larger population, especially for atrial fibrillation screening. The main goal of this study is to develop an automatic classification algorithm for normal sinus rhythm (NSR), atrial fibrillation (AF), other rhythms (O), and noise from a single channel short ECG segment (9-60 seconds). For this purpose, signal quality index (SQI) along with dense convolutional neural networks was used. Two convolutional neural network (CNN) models (main model that accepts 15 seconds ECG and secondary model that processes 9 seconds shorter ECG) were trained using the training data set. If the recording is determined to be of low quality by SQI, it is immediately classified as noisy. Otherwise, it is transformed to a time-frequency representation and classified with the CNN as NSR, AF, O, or noise. At the final step, a feature-based post-processing algorithm classifies the rhythm as either NSR or O in case the CNN models discrimination between the two is indeterminate. The best result achieved at the official phase of the PhysioNet/CinC challenge on the blind test set was 0.80 (F1 for NSR, AF, and O were 0.90, 0.80, and 0.70, respectively).