Do you want to publish a course? Click here

Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions

104   0   0.0 ( 0 )
 Added by Cheng Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although current deep generative adversarial networks (GANs) could synthesize high-quality (HQ) images, discovering novel GAN encoders for image reconstruction is still favorable. When embedding images to latent space, existing GAN encoders work well for aligned images (such as the human face), but they do not adapt to more generalized GANs. To our knowledge, current state-of-the-art GAN encoders do not have a proper encoder to reconstruct high-fidelity images from most misaligned HQ synthesized images on different GANs. Their performances are limited, especially on non-aligned and real images. We propose a novel method (named MTV-TSA) to handle such problems. Creating multi-type latent vectors (MTV) from latent space and two-scale attentions (TSA) from images allows designing a set of encoders that can be adaptable to a variety of pre-trained GANs. We generalize two sets of loss functions to optimize the encoders. The designed encoders could make GANs reconstruct higher fidelity images from most synthesized HQ images. In addition, the proposed method can reconstruct real images well and process them based on learned attribute directions. The designed encoders have unified convolutional blocks and could match well in current GAN architectures (such as PGGAN, StyleGANs, and BigGAN) by fine-tuning the corresponding normalization layers and the last block. Such well-designed encoders can also be trained to converge more quickly.



rate research

Read More

This work investigates three methods for calculating loss for autoencoder-based pretraining of image encoders: The commonly used reconstruction loss, the more recently introduced deep perceptual similarity loss, and a feature prediction loss proposed here; the latter turning out to be the most efficient choice. Standard auto-encoder pretraining for deep learning tasks is done by comparing the input image and the reconstructed image. Recent work shows that predictions based on embeddings generated by image autoencoders can be improved by training with perceptual loss, i.e., by adding a loss network after the decoding step. So far the autoencoders trained with loss networks implemented an explicit comparison of the original and reconstructed images using the loss network. However, given such a loss network we show that there is no need for the time-consuming task of decoding the entire image. Instead, we propose to decode the features of the loss network, hence the name feature prediction loss. To evaluate this method we perform experiments on three standard publicly available datasets (LunarLander-v2, STL-10, and SVHN) and compare six different procedures for training image encoders (pixel-wise, perceptual similarity, and feature prediction losses; combined with two variations of image and feature encoding/decoding). The embedding-based prediction results show that encoders trained with feature prediction loss is as good or better than those trained with the other two losses. Additionally, the encoder is significantly faster to train using feature prediction loss in comparison to the other losses. The method implementation used in this work is available online: https://github.com/guspih/Perceptual-Autoencoders
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned.
123 - Zhenqi Fu , Xiaopeng Lin , Wu Wang 2021
For underwater applications, the effects of light absorption and scattering result in image degradation. Moreover, the complex and changeable imaging environment makes it difficult to provide a universal enhancement solution to cope with the diversity of water types. In this letter, we present a novel underwater image enhancement (UIE) framework termed SCNet to address the above issues. SCNet is based on normalization schemes across both spatial and channel dimensions with the key idea of learning water type desensitized features. Considering the diversity of degradation is mainly rooted in the strong correlation among pixels, we apply whitening to de-correlates activations across spatial dimensions for each instance in a mini-batch. We also eliminate channel-wise correlation by standardizing and re-injecting the first two moments of the activations across channels. The normalization schemes of spatial and channel dimensions are performed at each scale of the U-Net to obtain multi-scale representations. With such latent encodings, the decoder can easily reconstruct the clean signal, and unaffected by the distortion types caused by the water. Experimental results on two real-world UIE datasets show that the proposed approach can successfully enhance images with diverse water types, and achieves competitive performance in visual quality improvement.
Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution transform map with continuousDNNs. The recently proposed AE-OT model addresses thisproblem by explicitly computing the discontinuous distribu-tion transform map through solving a semi-discrete optimaltransport (OT) map in the latent space of the autoencoder.However the generated images are blurry. In this paper, wepropose the AE-OT-GAN model to utilize the advantages ofthe both models: generate high quality images and at thesame time overcome the mode collapse/mixture problems.Specifically, we first faithfully embed the low dimensionalimage manifold into the latent space by training an autoen-coder (AE). Then we compute the optimal transport (OT)map that pushes forward the uniform distribution to the la-tent distribution supported on the latent manifold. Finally,our GAN model is trained to generate high quality imagesfrom the latent distribution, the distribution transform mapfrom which to the empirical data distribution will be con-tinuous. The paired data between the latent code and thereal images gives us further constriction about the generator.Experiments on simple MNIST dataset and complex datasetslike Cifar-10 and CelebA show the efficacy and efficiency ofour proposed method.
The state-of-the-art facial image inpainting methods achieved promising results but face realism preservation remains a challenge. This is due to limitations such as; failures in preserving edges and blurry artefacts. To overcome these limitations, we propose a Symmetric Skip Connection Wasserstein Generative Adversarial Network (S-WGAN) for high-resolution facial image inpainting. The architecture is an encoder-decoder with convolutional blocks, linked by skip connections. The encoder is a feature extractor that captures data abstractions of an input image to learn an end-to-end mapping from an input (binary masked image) to the ground-truth. The decoder uses learned abstractions to reconstruct the image. With skip connections, S-WGAN transfers image details to the decoder. Additionally, we propose a Wasserstein-Perceptual loss function to preserve colour and maintain realism on a reconstructed image. We evaluate our method and the state-of-the-art methods on CelebA-HQ dataset. Our results show S-WGAN produces sharper and more realistic images when visually compared with other methods. The quantitative measures show our proposed S-WGAN achieves the best Structure Similarity Index Measure (SSIM) of 0.94.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا