No Arabic abstract
This work investigates three methods for calculating loss for autoencoder-based pretraining of image encoders: The commonly used reconstruction loss, the more recently introduced deep perceptual similarity loss, and a feature prediction loss proposed here; the latter turning out to be the most efficient choice. Standard auto-encoder pretraining for deep learning tasks is done by comparing the input image and the reconstructed image. Recent work shows that predictions based on embeddings generated by image autoencoders can be improved by training with perceptual loss, i.e., by adding a loss network after the decoding step. So far the autoencoders trained with loss networks implemented an explicit comparison of the original and reconstructed images using the loss network. However, given such a loss network we show that there is no need for the time-consuming task of decoding the entire image. Instead, we propose to decode the features of the loss network, hence the name feature prediction loss. To evaluate this method we perform experiments on three standard publicly available datasets (LunarLander-v2, STL-10, and SVHN) and compare six different procedures for training image encoders (pixel-wise, perceptual similarity, and feature prediction losses; combined with two variations of image and feature encoding/decoding). The embedding-based prediction results show that encoders trained with feature prediction loss is as good or better than those trained with the other two losses. Additionally, the encoder is significantly faster to train using feature prediction loss in comparison to the other losses. The method implementation used in this work is available online: https://github.com/guspih/Perceptual-Autoencoders
Image reconstruction and synthesis have witnessed remarkable progress thanks to the development of generative models. Nonetheless, gaps could still exist between the real and generated images, especially in the frequency domain. In this study, we show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further. We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize by down-weighting the easy ones. This objective function is complementary to existing spatial losses, offering great impedance against the loss of important frequency information due to the inherent bias of neural networks. We demonstrate the versatility and effectiveness of focal frequency loss to improve popular models, such as VAE, pix2pix, and SPADE, in both perceptual quality and quantitative performance. We further show its potential on StyleGAN2.
Although current deep generative adversarial networks (GANs) could synthesize high-quality (HQ) images, discovering novel GAN encoders for image reconstruction is still favorable. When embedding images to latent space, existing GAN encoders work well for aligned images (such as the human face), but they do not adapt to more generalized GANs. To our knowledge, current state-of-the-art GAN encoders do not have a proper encoder to reconstruct high-fidelity images from most misaligned HQ synthesized images on different GANs. Their performances are limited, especially on non-aligned and real images. We propose a novel method (named MTV-TSA) to handle such problems. Creating multi-type latent vectors (MTV) from latent space and two-scale attentions (TSA) from images allows designing a set of encoders that can be adaptable to a variety of pre-trained GANs. We generalize two sets of loss functions to optimize the encoders. The designed encoders could make GANs reconstruct higher fidelity images from most synthesized HQ images. In addition, the proposed method can reconstruct real images well and process them based on learned attribute directions. The designed encoders have unified convolutional blocks and could match well in current GAN architectures (such as PGGAN, StyleGANs, and BigGAN) by fine-tuning the corresponding normalization layers and the last block. Such well-designed encoders can also be trained to converge more quickly.
Yelp has been one of the most popular local service search engine in US since 2004. It is powered by crowd-sourced text reviews and photo reviews. Restaurant customers and business owners upload photo images to Yelp, including reviewing or advertising either food, drinks, or inside and outside decorations. It is obviously not so effective that labels for food photos rely on human editors, which is an issue should be addressed by innovative machine learning approaches. In this paper, we present a simple but effective approach which can identify up to ten kinds of food via raw photos from the challenge dataset. We use 1) image pre-processing techniques, including filtering and image augmentation, 2) feature extraction via convolutional neural networks (CNN), and 3) three ways of classification algorithms. Then, we illustrate the classification accuracy by tuning parameters for augmentations, CNN, and classification. Our experimental results show this simple but effective approach to identify up to 10 food types from images.
Traditional image clustering methods take a two-step approach, feature learning and clustering, sequentially. However, recent research results demonstrated that combining the separated phases in a unified framework and training them jointly can achieve a better performance. In this paper, we first introduce fully convolutional auto-encoders for image feature learning and then propose a unified clustering framework to learn image representations and cluster centers jointly based on a fully convolutional auto-encoder and soft $k$-means scores. At initial stages of the learning procedure, the representations extracted from the auto-encoder may not be very discriminative for latter clustering. We address this issue by adopting a boosted discriminative distribution, where high score assignments are highlighted and low score ones are de-emphasized. With the gradually boosted discrimination, clustering assignment scores are discriminated and cluster purities are enlarged. Experiments on several vision benchmark datasets show that our methods can achieve a state-of-the-art performance.
In this paper, we propose a scalable image compression scheme, including the base layer for feature representation and enhancement layer for texture representation. More specifically, the base layer is designed as the deep learning feature for analysis purpose, and it can also be converted to the fine structure with deep feature reconstruction. The enhancement layer, which serves to compress the residuals between the input image and the signals generated from the base layer, aims to faithfully reconstruct the input texture. The proposed scheme can feasibly inherit the advantages of both compress-then-analyze and analyze-then-compress schemes in surveillance applications. The performance of this framework is validated with facial images, and the conducted experiments provide useful evidences to show that the proposed framework can achieve better rate-accuracy and rate-distortion performance over conventional image compression schemes.