Do you want to publish a course? Click here

On classical and quantum deformations of gauge theories

105   0   0.0 ( 0 )
 Added by Peter M. Lavrov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We elaborate the generalizations of the approach to gauge-invariant deformations of the gauge theories developed in our previous work [1]. In the given paper we construct the exact transformations defying the gauge-invariant deformed theory on the base of initial gauge theory with irreducible open gauge algebra. Like in [1], for the theories with open gauge algebras these transformations are the shifts of the initial gauge fields $A rightarrow A+h(A)$, with the help of the arbitrary and in general non-local functions $h(A)$. The results are applied to study the quantum aspects of the deformed theories. We derive the exact relation between the quantum effective actions for the above classical theories, where one is obtained from another with the help of the deformation.



rate research

Read More

Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various features of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.
We study a non-anticommutative chiral non-singlet deformation of the N=(1,1) abelian gauge multiplet in Euclidean harmonic superspace. We present a closed form of the gauge transformations and the unbroken N =(1,0) supersymmetry transformations preserving the Wess-Zumino gauge, as well as the bosonic sector of the N =(1,0) invariant action. This contribution is a summary of our main results in hep-th/0510013.
173 - Edwin Langmann 1996
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field theory lead to objects which have a natural interpretation as generalization of de Rham forms to NCG, and that this allows a geometric interpretation of anomaly derivations which is useful e.g. for making these calculations efficient. This paper is intended as selfcontained introduction to this line of ideas, including a review of some basic facts about anomalies. I first explain the notions from NCG needed and then discuss several different anomaly calculations: Schwinger terms in 1+1 and 3+1 dimensional current algebras, Chern--Simons terms from effective fermion actions in arbitrary odd dimensions. I also discuss the descent equations which summarize much of the geometric structure of anomalies, and I describe that these have a natural generalization to NCG which summarize the corresponding structures on the level of quantum field theory. Contribution to Proceedings of workshop `New Ideas in the Theory of Fundamental Interactions, Szczyrk, Poland 1995; to appear in Acta Physica Polonica B.
We propose a method of constructing a gauge invariant canonical formulation for non-gauge classical theory which depends on a set of parameters. Requirement of closure for algebra of operators generating quantum gauge transformations leads to restrictions on parameters of the theory. This approach is then applied for illustration to bosonic string theory coupled to background tachyonic field. It is shown that within the proposed canonical formulation the known mass-shell condition for tachyon is produced.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا