Do you want to publish a course? Click here

Topologically Massive Non-Abelian Gauge Theories: Constraints and Deformations

283   0   0.0 ( 0 )
 Added by Amitabha Lahiri
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.



rate research

Read More

146 - Bruno Bertrand CP3 2007
There exists a well-known duality between the Maxwell-Chern-Simons theory and the self-dual massive model in 2+1 dimensions. This dual description has been extended to topologically massive gauge theories (TMGT) in any dimension. This Letter introduces an unconventional approach to the construction of this type of duality through a reparametrisation of the master theory action. The dual action thereby obtained preserves the same gauge symmetry structure as the original theory. Furthermore, the dual action is factorised into a propagating sector of massive gauge invariant variables and a sector with gauge variant variables defining a pure topological field theory. Combining results obtained within the Lagrangian and Hamiltonian formulations, a new completed structure for a gauge invariant dual factorisation of TMGT is thus achieved.
We investigate in which sense, at the linearized level, one can extend the 3D topologically massive gravity theory beyond three dimensions. We show that, for each k=1,2,3... a free topologically massive gauge theory in 4k-1 dimensions can be defined describing a massive spin-2 particle provided one uses a non-standard representation of the massive spin-2 state which makes use of a two-column Young tableau where each column is of height 2k-1. We work out the case of k=2, i.e. 7D, and show, by canonical analysis, that the model describes, unitarily, 35 massive spin-2 degrees of freedom. The issue of interactions is discussed and compared with the three-dimensional situation.
240 - Bruno Bertrand CP3 2007
Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the 2+1 dimensional Maxwell-Chern-Simons and 3+1 dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However through an appropriate canonical transformation, a gauge invariant factorisation of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase space description of the associated non dynamical pure TFT. Within canonical quantisation, a likewise factorisation of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorisation scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge fixing procedure whatsoever.
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various features of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
We study a non-anticommutative chiral non-singlet deformation of the N=(1,1) abelian gauge multiplet in Euclidean harmonic superspace. We present a closed form of the gauge transformations and the unbroken N =(1,0) supersymmetry transformations preserving the Wess-Zumino gauge, as well as the bosonic sector of the N =(1,0) invariant action. This contribution is a summary of our main results in hep-th/0510013.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا